skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ubiquitous Life Cycle Assessment (U-LCA): A Proposed Concept for Environmental and Social Impact Assessment of Industry 4.0
Smart manufacturing in an Industry 4.0 setting requires developing unique infrastructures for sensing, wired and wireless communications, cyber-space computations and information tracking. While an exponential growth in smart infrastructures may impose drastic burdens on the environment, the conventional Life Cycle Assessment (LCA) techniques are incapable of quantifying such impacts. Therefore, there is a gap between advances in the manufacturing domain and the environmental assessment field. The capabilities offered by smart manufacturing can be applied to LCA with the aim of providing advanced impact assessment, and decision-making mechanisms that match the needs of its manufacturing counterpart.  more » « less
Award ID(s):
1705621
PAR ID:
10065238
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Manufacturing letters
Volume:
15
ISSN:
2213-8463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing volume of electronic waste (e-waste) creates significant environmental and economic challenges which demands practical management strategies. Life Cycle Assessment (LCA) has been known as a principal tool for evaluating the environmental impact of e-waste recycling and disposal methods. However, its application is hampered by inconsistencies in methodology, data limitations, and variations in system boundaries. This study provides a review of current LCA tools used in e-waste analysis and identifies gaps and opportunities for improvement. It categorizes studies into three groups: studies that applied LCA to product and process optimization, impact evaluation, and policy development. Findings reveal that LCA has been helpful in assessing the sustainability of different recycling strategies. However, significant variations exist in methodological approaches and data accuracy. Challenges such as the lack of standardized LCA protocols, the limited availability of regionspecific impact data, and inconsistencies in assessment methodologies are still barriers to its widespread adoption. Finally, the study discusses emerging trends in LCA aimed at addressing current gaps, including the incorporation of machine learning and artificial intelligence for predictive modeling, dynamic impact assessment frameworks, and the role of real-time data collection via IoT-based sensors. 
    more » « less
  2. Novel energy technologies, especially decentralized electricity generation systems, are increasingly being designed and implemented. However, potential environmental impacts are frequently recognized after installing new energy systems at full scale, at which point modification comes at a high cost. Life cycle assessment (LCA) can be used throughout the design-to-commercialization process to prevent this outcome, despite the challenges of emerging energy technology LCAs, like comparability, lack of data, scale-up difficulties, and uncertainties that are not typically faced while evaluating existing and established systems. The complexity and urgency of evaluating climate change impacts of novel energy technologies during the research and development stage reveal the need for guidance, presented in this study, with an emphasis on data collection, data processing, and uncertainty analysis. We outline best practices in choosing among several methods that have been employed in LCA studies to fill gaps in input data, including machine learning. Additionally, we discuss how design can be guided by LCA through assessment setting and delineation of scenarios or case studies, in order to prevent unnecessary effort and maximize the amount of useful, interpretable results. We also discuss the utility of complementary analyses, including global sensitivity analysis, neural network, Monte Carlo analysis that differentiates between uncertainty and variability parameters, and optimization. This guidance has the potential to make emerging electricity generation system implementation ultimately effective in reducing greenhouse gas emissions, through the methodological use of LCA in the design process. 
    more » « less
  3. Life cycle impact assessment (LCA) provides a better understanding of the energy, water, and material input and evaluates any production system’s output impacts. LCA has been carried out on various crops and products across the world. Some countries, however, have none or only a few studies. Here, we present the results of a literature review, following the PRISMA protocol, of what has been done in LCA to help stakeholders in these regions to understand the environmental impact at different stages of a product. The published literature was examined using the Google Scholar database to synthesize LCA research on agricultural activities, and 74 studies were analyzed. The evaluated papers are extensively studied in order to comprehend the various impact categories involved in LCA. The study reveals that tomatoes and wheat were the major crops considered in LCA. The major environmental impacts, namely, human toxicity potential and terrestrial ecotoxicity potential, were the major focus. Furthermore, the most used impact methods were CML, ISO, and IPCC. It was also found that studies were most often conducted in the European sector since most models and databases are suited for European agri-food products. The literature review did not focus on a specific region or a crop. Consequently, many studies appeared while searching using the keywords. Notwithstanding such limitations, this review provides a valuable reference point for those practicing LCA. 
    more » « less
  4. Most life cycle assessment (LCA) of crystalline silicon photovoltaics (c-Si PV) modules are based on public life cycle inventory (LCI) datasets with limited use of actual manufacturing data. We collect and calculate the amount of material used for production of different PV modules installed in the U.S. to analyze the trend in material intensity over and compare the numbers among various tier manufacturers and module reliability. Furthermore, results of LCA models using the public LCI data and the actual manufacturing material (specifically aluminum) data are compared to investigate the impact of material use on the life-cycle impact assessment of c-Si PV modules. Results show a trend of material use decrease over time and indicate a potential connection between material usage and the manufacturer tier – better manufacturers tend to use more materials for modules production which may lead to higher quality performance. Additional work will complete the life cycle assessment, explore more materials, and fill the data gap of PV modules produced by different manufacturer tiers in different years. 
    more » « less
  5. Abstract As the building sector faces global challenges that affect urban supplies of food, water and energy, multifaceted sustainability solutions need to be re-examined through the lens of built environments. Aquaponics, a strategy that combines recirculating aquaculture with hydroponics to optimize fish and plant production, has been recognized as one of "ten technologies which could change our lives" by merit of its potential to revolutionize how we feed urban populations. To holistically assess the environmental performance of urban aquaponic farms, impacts generated by aquaponic systems must be combined with impacts generated by host envelopes. This paper outlines the opportunities and challenges of using life cycle assessment (LCA) to evaluate and design urban aquaponic farms. The methodology described here is part of a larger study of urban integration of aquaponics conducted by the interdisciplinary research consortium CITYFOOD. First, the challenges of applying LCA in architecture and agriculture are outlined. Next, the urban aquaponic farm is described as a series of unit process flows. Using the ISO 14040:2006 framework for developing an LCA, subsequent LCA phases are described, focusing on scenario-specific challenges and tools. Particular attention is given to points of interaction between growing systems and host buildings that can be optimized to serve both. Using a hybrid LCA framework that incorporates methods from the building sector as well as the agricultural sector, built environment professionals can become key players in interdisciplinary solutions for the food-water-energy nexus and the design of sustainable urban food systems. 
    more » « less