skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rajendran, Pradeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mobile manipulators that combine base mobility with the dexterity of an articulated manipulator have gained popularity in numerous applications ranging from manufacturing and infrastructure inspection to domestic service. Deployments span a range of interaction tasks with the operational environment comprising minimal interaction tasks such as inspection and complex interaction tasks such as logistics resupply and assembly. This flexibility, offered by the redundancy, needs to be carefully orchestrated to realize enhanced performance. Thus, advanced decision-support methodologies and frameworks are crucial for successful mobile manipulation in (semi-) autonomous and teleoperation contexts. Given the enormous scope of the literature, we restrict our attention to decision-support frameworks specifically in the context of wheeled mobile manipulation. Hence, here, we present a classification of wheeled mobile manipulation literature while accounting for its diversity. The intertwining of the deployment tasks, application arenas, and decision-making methodologies are discussed with an eye for future avenues for research. 
    more » « less
  2. Abstract Vagus nerve stimulation has shown many benefits for disease therapies but current approaches involve imprecise electrical stimulation that gives rise to off-target effects, while the functionally relevant pathways remain poorly understood. One method to overcome these limitations is the use of optogenetic techniques, which facilitate targeted neural communication with light-sensitive actuators (opsins) and can be targeted to organs of interest based on the location of viral delivery. Here, we tested whether retrograde adeno-associated virus (rAAV2-retro) injected in the heart can be used to selectively express opsins in vagus nerve fibers controlling cardiac function. Furthermore, we investigated whether perturbations in cardiac function could be achieved with photostimulation at the cervical vagus nerve. Viral injection in the heart resulted in robust, primarily afferent, opsin reporter expression in the vagus nerve, nodose ganglion, and brainstem. Photostimulation using both one-photon stimulation and two-photon holography with a GRIN-lens incorporated nerve cuff, was tested on the pilot-cohort of injected mice. Changes in heart rate, surface electrocardiogram, and respiratory responses were observed in response to both one- and two-photon photostimulation. The results demonstrate feasibility of retrograde labeling for organ targeted optical neuromodulation. 
    more » « less