skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Survey of Wheeled Mobile Manipulation: A Decision-Making Perspective
Abstract Mobile manipulators that combine base mobility with the dexterity of an articulated manipulator have gained popularity in numerous applications ranging from manufacturing and infrastructure inspection to domestic service. Deployments span a range of interaction tasks with the operational environment comprising minimal interaction tasks such as inspection and complex interaction tasks such as logistics resupply and assembly. This flexibility, offered by the redundancy, needs to be carefully orchestrated to realize enhanced performance. Thus, advanced decision-support methodologies and frameworks are crucial for successful mobile manipulation in (semi-) autonomous and teleoperation contexts. Given the enormous scope of the literature, we restrict our attention to decision-support frameworks specifically in the context of wheeled mobile manipulation. Hence, here, we present a classification of wheeled mobile manipulation literature while accounting for its diversity. The intertwining of the deployment tasks, application arenas, and decision-making methodologies are discussed with an eye for future avenues for research.  more » « less
Award ID(s):
1939058 1924721
PAR ID:
10393722
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Mechanisms and Robotics
Volume:
15
Issue:
2
ISSN:
1942-4302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Construction project management requires frequent inspections to ensure the quality and progress of the construction work. Multiple stakeholders are involved in the inspection process during the project lifecycle. Some project stakeholders, such as architects, owners, structural engineers are involved with multiple construction projects at a time and are responsible to conduct timely inspection and monitoring tasks. This paper studies the potential of Virtual Reality (VR) and robotics for real-time remote inspection. The benefits and challenges of using VR for construction inspection and monitoring were identified and ranked through a systematic literature review. The top 5 benefits were found to be enhanced collaboration, realistic and immersive visualization, remote presence, reduction in inspection time, and support for decision-making. The top 5 challenges identified in this study include low- resolution displays, limited integration with existing technologies (such as BIM), causing disorientation and dizziness for the user, cost of adoption, and job site internet access limitations. Finally, a new approach was investigated for using VR to enable an immersive experience in remote inspection with an inspector assistant robot for real-time remote construction inspection. The experimental investigation verified the identified benefits and challenges. 
    more » « less
  2. Abstract Research in quadrupedal robotics is transitioning to studies into loco-manipulation, featuring fully articulated robotic arms mounted atop these robots. Integrating such arms enhances the practical utility of legged robots, paving the way for expanded applications like industrial inspection and search and rescue. Existing literature commonly employs a six-degree-of-freedom (six-DoF) arm directly mounted to the robot, which inherently adds significant weight and reduces the available payload for manipulation tasks. Our study explores an optimized combination of arm configuration and control framework by strategically reducing the DoFs and leveraging the quadruped robot’s inherent agile mobility. We demonstrate that by minimizing the DoFs to just one, a range of canonical loco-manipulation tasks can still be accomplished. Some tasks even show improved performance with fewer robotic arm DoFs due to the higher torque motor used in the design, allowing more of the robot’s payload to be used for manipulation. We designed our optimized one-DoF robotic arm and the control framework and tested it on top of a Unitree Aliengo. Our design outperforms conventional six-DoF counterparts in lifting capacity, achieving an impressive 8 kg payload compared to the 2 kg maximum payload of industry-standard six-DoF robotic arms on the same quadruped platform. 
    more » « less
  3. null (Ed.)
    In this paper, we present a planning and control framework for dynamic, whole-body motions for dynamically stable shape-accelerating mobile manipulators. This class of robots are inherently unstable and require careful coordination between the upper and lower body to maintain balance while performing manipulation tasks. Solutions to this problem either use a complex, full-body nonlinear dynamic model of the robot or a highly simplified model of the robot. Here we explore the use of centroidal dynamics which has recently become a popular approach for designing balancing controllers for humanoid robots. We describe a framework where we first solve a trajectory optimization problem offline. We define balancing for a ballbot in terms of the centroidal momentum instead of other approaches like ZMP or angular velocity that are more commonly used. The generated motion is tracked using a PD- PID cascading balancing controller for the body and torque controller for the arms. We demonstrate that this framework is capable of generating dynamic motion plans and control inputs with examples on the CMU ballbot, a single-spherical-wheeled balancing mobile manipulator. 
    more » « less
  4. Robots acting in human-scale environments must plan under uncertainty in large state–action spaces and face constantly changing reward functions as requirements and goals change. Planning under uncertainty in large state–action spaces requires hierarchical abstraction for efficient computation. We introduce a new hierarchical planning framework called Abstract Markov Decision Processes (AMDPs) that can plan in a fraction of the time needed for complex decision making in ordinary MDPs. AMDPs provide abstract states, actions, and transition dynamics in multiple layers above a base-level “flat” MDP. AMDPs decompose problems into a series of subtasks with both local reward and local transition functions used to create policies for subtasks. The resulting hierarchical planning method is independently optimal at each level of abstraction, and is recursively optimal when the local reward and transition functions are correct. We present empirical results showing significantly improved planning speed, while maintaining solution quality, in the Taxi domain and in a mobile-manipulation robotics problem. Furthermore, our approach allows specification of a decision-making model for a mobile-manipulation problem on a Turtlebot, spanning from low-level control actions operating on continuous variables all the way up through high-level object manipulation tasks. 
    more » « less
  5. Robots acting in human-scale environments must plan under uncertainty in large state–action spaces and face constantly changing reward functions as requirements and goals change. Planning under uncertainty in large state–action spaces requires hierarchical abstraction for efficient computation. We introduce a new hierarchical planning framework called Abstract Markov Decision Processes (AMDPs) that can plan in a fraction of the time needed for complex decision making in ordinary MDPs. AMDPs provide abstract states, actions, and transition dynamics in multiple layers above a base-level “flat” MDP. AMDPs decompose problems into a series of subtasks with both local reward and local transition functions used to create policies for subtasks. The resulting hierarchical planning method is independently optimal at each level of abstraction, and is recursively optimal when the local reward and transition functions are correct. We present empirical results showing significantly improved planning speed, while maintaining solution quality, in the Taxi domain and in a mobile-manipulation robotics problem. Furthermore, our approach allows specification of a decision-making model for a mobile-manipulation problem on a Turtlebot, spanning from low-level control actions operating on continuous variables all the way up through high-level object manipulation tasks. 
    more » « less