skip to main content

This content will become publicly available on April 1, 2024

Title: A Survey of Wheeled Mobile Manipulation: A Decision-Making Perspective
Abstract Mobile manipulators that combine base mobility with the dexterity of an articulated manipulator have gained popularity in numerous applications ranging from manufacturing and infrastructure inspection to domestic service. Deployments span a range of interaction tasks with the operational environment comprising minimal interaction tasks such as inspection and complex interaction tasks such as logistics resupply and assembly. This flexibility, offered by the redundancy, needs to be carefully orchestrated to realize enhanced performance. Thus, advanced decision-support methodologies and frameworks are crucial for successful mobile manipulation in (semi-) autonomous and teleoperation contexts. Given the enormous scope of the literature, we restrict our attention to decision-support frameworks specifically in the context of wheeled mobile manipulation. Hence, here, we present a classification of wheeled mobile manipulation literature while accounting for its diversity. The intertwining of the deployment tasks, application arenas, and decision-making methodologies are discussed with an eye for future avenues for research.
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1939058 1924721
Publication Date:
Journal Name:
Journal of Mechanisms and Robotics
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present a planning and control framework for dynamic, whole-body motions for dynamically stable shape-accelerating mobile manipulators. This class of robots are inherently unstable and require careful coordination between the upper and lower body to maintain balance while performing manipulation tasks. Solutions to this problem either use a complex, full-body nonlinear dynamic model of the robot or a highly simplified model of the robot. Here we explore the use of centroidal dynamics which has recently become a popular approach for designing balancing controllers for humanoid robots. We describe a framework where we first solve a trajectory optimization problem offline. We define balancing for a ballbot in terms of the centroidal momentum instead of other approaches like ZMP or angular velocity that are more commonly used. The generated motion is tracked using a PD- PID cascading balancing controller for the body and torque controller for the arms. We demonstrate that this framework is capable of generating dynamic motion plans and control inputs with examples on the CMU ballbot, a single-spherical-wheeled balancing mobile manipulator.
  2. Abstract Background

    In this paper, we consider the applicability of the customer journey framework from retailing as a driver for urban informatics at individual scales within urban science. The customer journey considers shopper experiences in the context of shopping paths, retail service spaces, and touch-points that draw them into contact. Around this framework, retailers have developed sophisticated data science for observation, identification, and measurement of customers in the context of their shopping behavior. This knowledge supports broad data-driven understanding of customer experiences in physical spaces, economic spaces of decision and choice, persuasive spaces of advertising and branding, and inter-personal spaces of customer-staff interaction.


    We review the literature on pedestrian and high street retailing, and on urban informatics. We investigate whether the customer journey could be usefully repurposed for urban applications. Specifically, we explore the potential use of the customer journey framework for producing new insight into pedestrian behavior, where a sort of empirical hyperopia has long abounded because data are always in short supply.


    Our review addresses how the customer journey might be used as a structure for examining how urban walkers come into contact with the built environment, how people actively and passively sense and perceive ambient city life as they move, howmore »pedestrians make sense of urban context, and how they use this knowledge to build cognition of city streetscapes. Each of these topics has relevance to walking studies specifically, but also to urban science more generally. We consider how retailing might reciprocally benefit from urban science perspectives, especially in extending the reach of retailers' insight beyond store walls, into the retail high streets from which they draw custom.


    We conclude that a broad set of theoretical frameworks, data collection schemes, and analytical methodologies that have advanced retail data science closer and closer to individual-level acumen might be usefully applied to accomplish the same in urban informatics. However, we caution that differences between retailers’ and urban scientists’ viewpoints on privacy presents potential controversy.

    « less
  3. Construction project management requires frequent inspections to ensure the quality and progress of the construction work. Multiple stakeholders are involved in the inspection process during the project lifecycle. Some project stakeholders, such as architects, owners, structural engineers are involved with multiple construction projects at a time and are responsible to conduct timely inspection and monitoring tasks. This paper studies the potential of Virtual Reality (VR) and robotics for real-time remote inspection. The benefits and challenges of using VR for construction inspection and monitoring were identified and ranked through a systematic literature review. The top 5 benefits were found to be enhanced collaboration, realistic and immersive visualization, remote presence, reduction in inspection time, and support for decision-making. The top 5 challenges identified in this study include low- resolution displays, limited integration with existing technologies (such as BIM), causing disorientation and dizziness for the user, cost of adoption, and job site internet access limitations. Finally, a new approach was investigated for using VR to enable an immersive experience in remote inspection with an inspector assistant robot for real-time remote construction inspection. The experimental investigation verified the identified benefits and challenges.
  4. Legged robots have the advantage of being able to maneuver rough, unstructured terrains unlike their wheeled counterparts. However, many legged robots require multiple sensors and online computations to specify the gait, trajectory or contact forces in real-time for a given terrain, and these methods can break down when sensory information is unreliable or not available. Over the years, underactuated mechanisms have demonstrated great success in object grasping and manipulation tasks due to their ability to passively adapt to the geometry of the objects without sensors. In this paper, we present an application of underactuation in the design of a legged robot with prismatic legs that maneuvers unstructured terrains under open-loop control using only four actuators – one for stance for each half of the robot, one for forward translation, and one for steering. Through experimental results, we show that prismatic legs can support a statically stable stance and can facilitate locomotion over unstructured terrain while maintaining its body posture.
  5. Robots acting in human-scale environments must plan under uncertainty in large state–action spaces and face constantly changing reward functions as requirements and goals change. Planning under uncertainty in large state–action spaces requires hierarchical abstraction for efficient computation. We introduce a new hierarchical planning framework called Abstract Markov Decision Processes (AMDPs) that can plan in a fraction of the time needed for complex decision making in ordinary MDPs. AMDPs provide abstract states, actions, and transition dynamics in multiple layers above a base-level “flat” MDP. AMDPs decompose problems into a series of subtasks with both local reward and local transition functions used to create policies for subtasks. The resulting hierarchical planning method is independently optimal at each level of abstraction, and is recursively optimal when the local reward and transition functions are correct. We present empirical results showing significantly improved planning speed, while maintaining solution quality, in the Taxi domain and in a mobile-manipulation robotics problem. Furthermore, our approach allows specification of a decision-making model for a mobile-manipulation problem on a Turtlebot, spanning from low-level control actions operating on continuous variables all the way up through high-level object manipulation tasks.