skip to main content

Search for: All records

Creators/Authors contains: "Ramadhan, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Populating the exoplanet mass–radius diagram in order to identify the underlying relationship that governs planet composition is driving an interdisciplinary effort within the exoplanet community. The discovery of hot super-Earths—a high-temperature, short-period subset of the super-Earth planet population—has presented many unresolved questions concerning the formation, evolution, and composition of rocky planets. We report the discovery of a transiting, ultra-short-period hot super-Earth orbitingTOI-1075(TIC351601843), a nearby (d= 61.4 pc) late-K/early-M-dwarf star, using data from the Transiting Exoplanet Survey Satellite. The newly discovered planet has a radius of 1.7910.081+0.116Rand an orbital period of 0.605 day (14.5 hr). We precisely measure the planet mass to be 9.951.30+1.36Musing radial velocity measurements obtained with the Planet Finder Spectrograph mounted on the Magellan II telescope. Our radial velocity data also show a long-term trend, suggesting an additional planet in the system. While TOI-1075 b is expected to have a substantial H/He atmosphere given its size relative to the radius gap, its high density (9.321.85+2.05g cm−3) is likely inconsistent with this possibility. We explore TOI-1075 b’s location relative to the M-dwarf radius valley, evaluate the planet’s prospects for atmospheric characterization, andmore »discuss potential planet formation mechanisms. Studying the TOI-1075 system in the broader context of ultra-short-period planetary systems is necessary for testing planet formation and evolution theories and density-enhancing mechanisms and for future atmospheric and surface characterization studies via emission spectroscopy with the JWST.

    « less
  2. Abstract Between 5% and 25% of the total momentum transferred between the atmosphere and ocean is transmitted via the growth of long surface gravity waves called “swell.” In this paper, we use large-eddy simulations to show that swell-transmitted momentum excites near-inertial waves and drives turbulent mixing that deepens a rotating, stratified, turbulent ocean surface boundary layer. We find that swell-transmitted currents are less effective at producing turbulence and mixing the boundary layer than currents driven by an effective surface stress. Overall, however, the differences between swell-driven and surface-stress-driven boundary layers are relatively minor. In consequence, our results corroborate assumptions made in Earth system models that neglect the vertical structure of swell-transmitted momentum fluxes and instead parameterize all air–sea momentum transfer processes with an effective surface stress.
  3. Abstract Antarctic glacial meltwater is thought to play an important role in determining large-scale Southern Ocean climate trends, yet recent modeling efforts have proceeded without a good understanding of how its vertical distribution in the water column is set. To rectify this, here we conduct new large-eddy simulations of the ascent of a buoyant meltwater plume after its escape from beneath an Antarctic ice shelf. We find that the meltwater’s settling depth is primarily a function of the buoyancy forcing per unit width of the source and the ambient stratification, consistent with the classical theory of turbulent buoyant plumes and in contrast to previous work that suggested an important role for centrifugal instability. Our results further highlight the significant role played by localized variability in stratification; this helps explain observed interannual variability in the vertical meltwater distribution near Pine Island Glacier. Because of the vast heterogeneity in mass loss rates and ambient conditions at different Antarctic ice shelves, a dynamic parameterization of meltwater settling depth may be crucial for accurately simulating high-latitude climate in a warming world; we discuss how this may be developed following this work, and where the remaining challenges lie.