Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
We present a novel approach to predicting source-and-target factuality by transforming it into a linearized tree generation task. Unlike previous work, our model and representation format fully account for the factuality tree structure, generating the full chain of nested sources instead of the last source only. Furthermore, our linearized tree representation significantly compresses the amount of tokens needed compared to other representations, allowing for fully end-to-end systems. We achieve state-of-the-art results on FactBank and the Modal Dependency Corpus, which are both corpora annotating source-and-target event factuality. Our results on fine-tuning validate the strong generality of the proposed linearized tree generation task, which can be easily adapted to other corpora with a similar structure. We then present BeLeaf, a system which directly leverages the linearized tree representation to create both sentence level and document level visualizations. Our system adds several missing pieces to the source-and-target factuality task such as coreference resolution and event head word to syntactic span conversion. Our demo code is available on https://github.com/yurpl/beleaf and our video is available on https://youtu.be/SpbMNnin-Po.more » « less
-
Hedges allow speakers to mark utterances as provisional, whether to signal non-prototypicality or “fuzziness”, to indicate a lack of commitment to an utterance, to attribute responsibility for a statement to someone else, to invite input from a partner, or to soften critical feedback in the service of face management needs. Here we focus on hedges in an experimentally parameterized corpus of 63 Roadrunner cartoon narratives spontaneously produced from memory by 21 speakers for co-present addressees, transcribed to text (Galati and Brennan, 2010). We created a gold standard of hedges annotated by human coders (the Roadrunner-Hedge corpus) and compared three LLM-based approaches for hedge detection: fine-tuning BERT, and zero and few-shot prompting with GPT-4o and LLaMA-3. The best-performing approach was a fine-tuned BERT model, followed by few-shot GPT-4o. After an error analysis on the top performing approaches, we used an LLM-in-the-Loop approach to improve the gold standard coding, as well as to highlight cases in which hedges are ambiguous in linguistically interesting ways that will guide future research. This is the first step in our research program to train LLMs to interpret and generate collateral signals appropriately and meaningfully in conversation.more » « less
-
Evaluating the theory of mind (ToM) capabilities of language models (LMs) has recently received a great deal of attention. However, many existing benchmarks rely on synthetic data, which risks misaligning the resulting experiments with human behavior. We introduce the first ToM dataset based on naturally occurring spoken dialogs, Common-ToM, and show that LMs struggle to demonstrate ToM. We then show that integrating a simple, explicit representation of beliefs improves LM performance on Common-ToM.more » « less
An official website of the United States government

Full Text Available