skip to main content


Search for: All records

Creators/Authors contains: "Rangwala, Huzefa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chen, Zhuo (Ed.)
    Opioid overdoses within the United States continue to rise and have been negatively impacting the social and economic status of the country. In order to effectively allocate resources and identify policy solutions to reduce the number of overdoses, it is important to understand the geographical differences in opioid overdose rates and their causes. In this study, we utilized data on emergency department opioid overdose (EDOOD) visits to explore the county-level spatio-temporal distribution of opioid overdose rates within the state of Virginia and their association with aggregate socio-ecological factors. The analyses were performed using a combination of techniques including Moran’s I and multilevel modeling. Using data from 2016–2021, we found that Virginia counties had notable differences in their EDOOD visit rates with significant neighborhood-level associations: many counties in the southwestern region were consistently identified as the hotspots (areas with a higher concentration of EDOOD visits) whereas many counties in the northern region were consistently identified as the coldspots (areas with a lower concentration of EDOOD visits). In most Virginia counties, EDOOD visit rates declined from 2017 to 2018. In more recent years (since 2019), the visit rates showed an increasing trend. The multilevel modeling revealed that the change in clinical care factors (i.e., access to care and quality of care) and socio-economic factors (i.e., levels of education, employment, income, family and social support, and community safety) were significantly associated with the change in the EDOOD visit rates. The findings from this study have the potential to assist policymakers in proper resource planning thereby improving health outcomes. 
    more » « less
  2. Deep learning models have been studied to forecast human events using vast volumes of data, yet they still cannot be trusted in certain applications such as healthcare and disaster assistance due to the lack of interpretability. Providing explanations for event predictions not only helps practitioners understand the underlying mechanism of prediction behavior but also enhances the robustness of event analysis. Improving the transparency of event prediction models is challenging given the following factors: (i) multilevel features exist in event data which creates a challenge to cross-utilize different levels of data; (ii) features across different levels and time steps are heterogeneous and dependent; and (iii) static model-level interpretations cannot be easily adapted to event forecasting given the dynamic and temporal characteristics of the data. Recent interpretation methods have proven their capabilities in tasks that deal with graph-structured or relational data. In this paper, we present a Contextualized Multilevel Feature learning framework, CMF, for interpretable temporal event prediction. It consists of a predictor for forecasting events of interest and an explanation module for interpreting model predictions. We design a new context-based feature fusion method to integrate multiple levels of heterogeneous features. We also introduce a temporal explanation module to determine sequences of text and subgraphs that have crucial roles in a prediction. We conduct extensive experiments on several real-world datasets of political and epidemic events. We demonstrate that the proposed method is competitive compared with the state-of-the-art models while possessing favorable interpretation capabilities. 
    more » « less
  3. We present a Research-to-Practice paper where we used role-play case studies to improve student understanding of the ethics of algorithms. As the use of algorithmic decision-making continues to grow across areas of society, there is a need to prepare future technology workforce for ethical thinking related. Our work was informed by the situated learning paradigm, and our goal was to improve perspectival thinking among students. Recognizing an issue from multiple perspectives and taking on different perspectives to examine it leads to increased understanding. Drawing on this work, we created and implemented a role-play case study in an undergraduate computing data mining course. The role-play case study focused on the use of algorithms for facial recognition. Data were collected from pre-and post- discussion assignments, and a student survey. Thirty-one students enrolled in the course and completed the ethics module. The data collected in the assignments focused on student's recognition of ethical dilemmas, the change in student's perspective on the case due to creating a collaborative consensus and understanding the complexity of algorithmic decision making. To formally analyze the data, we created a coding schema drawing on the literature and preliminary qualitative analysis of our data. The data were independently coded by multiple coders. The findings indicate that through their participation in collaborative role-play scenarios, students were able to recognize a wide range of issues and offer potential solutions. We discuss the implications of the work. Curriculum material created as part of this work is available as an open education resource. 
    more » « less
  4. Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updating or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement. FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)