skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rasmussen, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data from the Parsivel disdrometer that was deployed on Yonaguni (a Japanese island to the east of Taiwan) for the PRECIP (Prediction of Rainfall Extremes Campaign in the Pacific) campaign from June to August 2022. It was deployed near the CSU SEA-POL dual-polarization radar to obtain drop-size distribution measurements in Mei-yu fronts, thunderstorms, and tropical cyclones. 
    more » « less
  2. Abstract We present 18 yr of OGLE photometry together with spectra obtained over 12 yr revealing that the early Oe star AzV 493 shows strong photometric (ΔI< 1.2 mag) and spectroscopic variability with a dominant, 14.6 yr pattern and ∼40 day oscillations. We estimate the stellar parametersTeff= 42,000 K, log L / L = 5.83 ± 0.15 ,M/M= 50 ± 9, andvsini= 370 ± 40 km s−1. Direct spectroscopic evidence shows episodes of both gas ejection and infall. There is no X-ray detection, and it is likely a runaway star. The star AzV 493 may have an unseen companion on a highly eccentric (e> 0.93) orbit. We propose that close interaction at periastron excites ejection of the decretion disk, whose variable emission-line spectrum suggests separate inner and outer components, with an optically thick outer component obscuring both the stellar photosphere and the emission-line spectrum of the inner disk at early phases in the photometric cycle. It is plausible that AzV 493’s mass and rotation have been enhanced by binary interaction followed by the core-collapse supernova explosion of the companion, which now could be either a black hole or a neutron star. This system in the Small Magellanic Cloud can potentially shed light on OBe decretion disk formation and evolution, massive binary evolution, and compact binary progenitors. 
    more » « less
  3. null (Ed.)
    This study investigates the synoptic-scale flows associated with extreme rainfall systems over the Asian–Australian monsoon region (90 – 160°E and 12°S – 27°N). On the basis of the statistics of the 17-year Precipitation Radar observations from Tropical Rainfall Measurement Mission, a total of 916 extreme systems, with both the horizontal size and maximum rainfall intensity exceeding the 99.9th percentiles of the tropical rainfall systems, are identified over this region. The synoptic wind pattern and rainfall distribution surrounding each system are classified into four major types: vortex, coastal, coastal with vortex, and none of above, with each accounting for 44, 29, 7, and 20 %, respectively. The vortex type occurs mainly over the off-equatorial areas in boreal summer. The coast-related types show significant seasonal variations in their occurrence, with high frequency in the Bay of Bengal in boreal summer and on the west side of Borneo and Sumatra in boreal winter. The none-of-the-above type occurs mostly over the open ocean and in boreal winter; these events are mainly associated with the cold surge events. The environment analysis shows that coast-related extremes in the warm season are found within the areas where high total water vapor and low-level vertical wind shear occur frequently. Despite the different synoptic environments, these extremes show a similar internal structure, with broad stratiform and wide convective core (WCC) rain. Furthermore, the maximum rain rate is located mostly over the convective area, near the convective–stratiform boundary in the system. Our results highlight the critical role of the strength and direction of synoptic flows in the generation of extreme rainfall systems near coastal areas. With the enhancement of the lowlevel vertical wind shear and moisture by the synoptic flow, the coastal convection triggered diurnally has a higher chance to organize into mesoscale convective systems and hence a higher probability to produce extreme rainfall. 
    more » « less
  4. null (Ed.)
    Hailstorms are dangerous and costly phenomena that are expected to change in response to a warming climate. In this Review, we summarize current knowledge of climate change effects on hailstorms. As a result of anthropogenic warming, it is generally anticipated that low-level moisture and convective instability will increase, raising hailstorm likelihood and enabling the formation of larger hailstones; the melting height will rise, enhancing hail melt and increasing the average size of surviving hailstones; and vertical wind shear will decrease overall, with limited influence on the overall hailstorm activity, owing to a predominance of other factors. Given geographic differences and offsetting interactions in these projected environmental changes, there is spatial heterogeneity in hailstorm responses. Observations and modelling lead to the general expectation that hailstorm frequency will increase in Australia and Europe, but decrease in East Asia and North America, while hail severity will increase in most regions. However, these projected changes show marked spatial and temporal variability. Owing to a dearth of long-term observations, as well as incomplete process understanding and limited convection-permitting modelling studies, current and future climate change effects on hailstorms remain highly uncertain. Future studies should focus on detailed processes and account for non-stationarities in proxy relationships. 
    more » « less
  5. Abstract Humpback whales (Megaptera novaeangliae) are a cosmopolitan species and perform long annual migrations between low-latitude breeding areas and high-latitude feeding areas. Their breeding populations appear to be spatially and genetically segregated due to long-term, maternally inherited fidelity to natal breeding areas. In the Southern Hemisphere, some humpback whale breeding populations mix in Southern Ocean waters in summer, but very little movement between Pacific and Atlantic waters has been identified to date, suggesting these waters constituted an oceanic boundary between genetically distinct populations. Here, we present new evidence of summer co-occurrence in the West Antarctic Peninsula feeding area of two recovering humpback whale breeding populations from the Atlantic (Brazil) and Pacific (Central and South America). As humpback whale populations recover, observations like this point to the need to revise our perceptions of boundaries between stocks, particularly on high latitude feeding grounds. We suggest that this “Southern Ocean Exchange” may become more frequent as populations recover from commercial whaling and climate change modifies environmental dynamics and humpback whale prey availability. 
    more » « less