skip to main content

Search for: All records

Creators/Authors contains: "Reed, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available September 1, 2023
  3. As several new spectrum bands are opening up for shared use, a new paradigm of Diverse Band-aware Dynamic Spectrum Access (d-DSA) has emerged. d-DSA equips a secondary device with software defined radios (SDRs) and utilize whitespaces (or idle channels) in multiple bands, including but not limited to TV, LTE, Citizen Broadband Radio Service (CBRS), unlicensed ISM. In this paper, we propose a decentralized, online multi-agent reinforcement learning based cross-layer BAnd selection and Routing Design (BARD) for such d-DSA networks. BARD not only harnesses whitespaces in multiple spectrum bands, but also accounts for unique electro-magnetic characteristics of those bands to maximize the desired quality of service (QoS) requirements of heterogeneous message packets; while also ensuring no harmful interference to the primary users in the utilized band. Our extensive experiments demonstrate that BARD outperforms the baseline dDSAaR algorithm in terms of message delivery ratio, however, at a relatively higher network latency, for varying number of primary and secondary users. Furthermore, BARD greatly outperforms its single-band DSA variants in terms of both the metrics in all considered scenarios.
  4. Current cellular systems use pilot-aided statistical channel state information (S-CSI) estimation and limited feedback schemes to aid in link adaptation and scheduling decisions. However, in the presence of pulsed radar signals, pilot-aided S-CSI is inaccurate since interference statistics on pilot and nonpilot resources can be different. Moreover, the channel will be bimodal as a result of the periodic interference. In this paper, we propose a max-min heuristic to estimate the post-equalizer SINR in the case of non-pilot pulsed radar interference, and characterize its distribution as a function of noise variance and interference power. We observe that the proposed heuristic incurs low computational complexity, and is robust beyond a certain SINR threshold for different modulation schemes, especially for QPSK. This enables us to develop a comprehensive semi-blind framework to estimate the wideband SINR metric that is commonly used for S-CSI quantization in 3GPP Long-Term Evolution (LTE) and New Radio (NR) networks. Finally, we propose dual CSI feedback for practical radar-cellular spectrum sharing, to enable accurate CSI acquisition in the bimodal channel. We demonstrate significant improvements in throughput, block error rate and retransmission-induced latency for LTE-Advanced Pro when compared to conventional pilot-aided S-CSI estimation and limited feedback schemes.