skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 5G/6G spectrum Ray Tracing Data for Diffraction aided Positioning
We created this dataset to study Outdoor-to-Indoor (O2I) signal propagation using four UAV transmitters and 17,485 receivers positioned inside the building. For each receiver location and transmitter, we generated up to 25 multipath components by simulating six transmissions, six reflections, one diffraction, and diffused multipath (comprising two transmissions and one diffraction) using Remcom's Wireless InSite. The simulations were conducted with APG acceleration enabled, covering 5G/6G spectrum consisting of frequencies of 0.8 GHz, 2.4 GHz, 5.8 GHz, 8 GHz, 10 GHz, 15 GHz, 28 GHz, 37 GHz, and 48 GHz. The transmit power was set to 30 dBm. For each propagation path, we provide time of flight, 2D angle of arrival, 2D angle of departure, signal strength, interaction summary, number of interactions, and interaction points.  more » « less
Award ID(s):
1923807 2107276
PAR ID:
10570718
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE DataPort
Date Published:
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—This letter provides a comparison of indoor radio propagation measurements and corresponding channel statistics at 28, 73, and 140 GHz, based on extensive measurements from 2014-2020 in an indoor office environment. Side-by-side comparisons of propagation characteristics (e.g., large-scale path loss and multipath time dispersion) across a wide range of frequencies from the low millimeter wave band of 28 GHz to the sub-THz band of 140 GHz illustrate the key similarities and differences in indoor wireless channels. The measurements and models show remarkably similar path loss exponents over frequencies in both line-of-sight (LOS) and non-LOS (NLOS) scenarios, when using a one meter free space reference distance, while the multipath time dispersion becomes smaller at higher frequencies. The 3GPP indoor channel model overestimates the large-scale path loss and has unrealistic large numbers of clusters and multipath components per cluster compared to the measured channel statistics in this letter. Index Terms—mmWave, THz, channel models, multipath time dispersion, 5G, 6G, large-scale path loss, 3GPP InH. 
    more » « less
  2. One of the key enhancements in the upcoming 802.11ay standard for 60 GHz WLANs is the support for simultaneous transmissions of up to 8 data streams via SU- and MU-MIMO, which has the potential to enable data rates up to 100 Gbps. However, in spite of the key role MIMO is expected to play in 802.11ay, experimental evaluation of MIMO performance in 60 GHz WLANs has been limited to date, primarily due to lack of hardware supporting MIMO transmissions at millimeter wave frequencies. In this work, we fill this gap by conducting the first large-scale experimental evaluation of SU- and MU-MIMO performance in 60 GHz WLANs. Unlike previous studies, our study involves multiple environments with very different multipath characteristics. We analyze the performance in each environment, identify the factors that affect it, and compare it against the performance of SISO. Further, we seek to identify factors that can guide beam and user selection to limit the (often prohibitive in practice) overhead of exhaustive search. Finally, we propose two heuristics that perform both user and beam selection with low overhead, and show that they perform close to an Oracle solution and outperform previously proposed approaches in both static and mobile scenarios, regardless of the environment and number of users. 
    more » « less
  3. The paper deals with an analysis of multipath propagation environment in the 60 GHz band using a pseudo-random binary sequence-based time-domain channel sounder with 8 GHz bandwidth. The main goal of this work is to analyze the multipath components (MPCs) propagation between a moving car carrying a transmitter with an omnidirectional antenna and a fixed receiver situated in a building equipped with a manually steered directional horn antenna. The paper briefly presents the time dependence of the dominant MPC magnitudes, shows the effect of the surrounding vegetation on the RMS delay spread and signal attenuation, and statistically evaluates the reflective properties of the road which creates the dominant reflected component. To understand how the MPCs propagate through the channel we measured and analyzed the power and the RMS delay spread distributions in the static environment surrounding the car using an automated measuring system with a controlled receiver antenna tracking system. We give some examples of how the MPC magnitudes change during the antenna tracking and demonstrate that a building and a few cars parked close to the measuring car create a lot of MPCs detectable by the setup with a dynamic range of about 50 dB. 
    more » « less
  4. Communication at mmWave bands carries critical importance for 5G wireless networks. In this paper, we study the characterization of mmWave air-to-ground (AG) channels for unmanned aerial vehicle (UAV) communications. In particular, we use ray tracing simulations using Remcom Wireless InSite software to study the behavior of AG mmWave bands at two different frequencies: 28 GHz and 60 GHz. Received signal strength (RSS) and root mean square delay spread (RMS-DS) of multipath components (MPCs) are analyzed for different UAV heights considering four different environments: urban, suburban, rural, and over sea. It is observed that the RSS mostly follows the two ray propagation model along the UAV flight path for higher altitudes. This two ray propagation model is affected by the presence of high rise scatterers in urban scenario. Moreover, we present details of a universal serial radio peripheral (USRP) based channel sounder that can be used for AG channel measurements for mmWave (60 GHz) UAV communications. 
    more » « less
  5. null (Ed.)
    3GPP air interface standards support meter-level position location of a user in a cellular network. With wider bandwidths and narrow antenna beamwidths available at mmWave frequencies, cellular networks now have the potential to provide sub-meter position location for each user. In this work, we provide an overview of 3GPP position location techniques that are designed for line-of-sight propagation. We discuss additional measurements required in the 3GPP standard that enable multipath-based non-line-of-sight position location. Further, we validate the concepts in this paper by using field data to test a map-based position location algorithm in an indoor office environment which has dimensions of 35 m by 65.5 m. We demonstrate how the fusion of angle of arrival and time of flight information in concert with a 3-D map of the office provides a mean accuracy of 5.72 cm at 28 GHz and 6.29 cm at 140 GHz, over 23 receiver distances ranging from 4.2 m to 32.3 m, using a single base station in line-of-sight and non-line-of-sight. We also conduct a theoretical analysis of the typical error experienced in the map-based position location algorithm and show that the complexity of the map-based algorithm is low enough to allow real-time implementation. 
    more » « less