skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reed, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Abstract A great diversity of crustacean zooplankton found in inland and coastal waters produce embryos that settle into bottom sediments to form an egg bank. Embryos from these banks can remain dormant for centuries, creating a reservoir of genetic diversity. A large body of literature describes the ecological and evolutionary importance of zooplankton egg banks. However, literature on the physiological traits behind dormancy in crustacean zooplankton are limited. Most data on the physiology of dormancy comes from research on one species of anostracan, the brine shrimp,Artemia franciscana. Anoxia-induced dormancy in this species is facilitated by a profound and reversible acidification of the intracellular space. This acidification is accompanied by a reversible depletion of adenosine triphosphate (ATP). The present study demonstrates that acidification of the intracellular space also occurs in concert with a depletion of nucleoside triphosphates (NTPs) in the Antarctic copepod,Boeckella poppei. LikeA. franciscana, the depletion of NTPs and acidification are rapidly reversed during aerobic recovery inB. poppei. These data provide the first comparative evidence that extreme dormancy under anoxia in crustacean zooplankton is associated with intracellular acidification and an ability to recover from the depletion of ATP. 
    more » « less