skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reimitz, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study Drell-Yan production in universal theories consistently including effects beyond dimension six in the Standard Model effective field theory (SMEFT). Within universal SMEFT and with C and P conservation we find that 11 dimension-eight operators contribute in addition to the six contributing at dimension six. We first work in an operator basis in which operators with higher derivatives of the bosonic fields have been rotated by equations of motion in favor of combinations of operators involving SM fermion currents. We derive the general form of the amplitudes consistently in the expansion to O ( Λ 4 ) and identify eight combinations of the 17 Wilson coefficients which are physically distinguishable by studying the invariant mass distribution of the lepton pairs produced. We then introduce an extension of the parametrization of universal effects in terms of oblique parameters obtained by linearly expanding the self-energies of the electroweak gauge bosons to O ( q 6 ) . It contains 11 oblique parameters of which only eight are generated within SMEFT at dimension eight: S ^ , T ^ , W , Y , U ^ , X , plus two additional which we label W and Y and show how they match at linear order with the eight identified combinations of operator coefficients. We then perform a combined analysis of a variety of LHC data on the neutral- and charged-current Drell-Yan processes with the aim of constraining the eight combinations. We compare and combine the LHC bounds with those from electroweak precision W and Z pole observables which can only provide constraints in four directions of the eight-parameter space. We present the results in terms of limits on the eight effective Wilson coefficients as well as on the eight oblique parameters. In each case, we study the dependence of the derived constraints on the order of the expansion considered. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. We perform a complete study of the electroweak precision observables and electroweak gauge boson pair production in terms of the Standard Model effective field theory up to Oð1=Λ4Þ under the assumption of universal C and P conserving new physics. We show that the analysis of data from those two sectors allows us to obtain closed constraints in the relevant parameter space in this scenario. In particular, we find that the Large Hadron Collider data can independently constrain the Wilson coefficients of the dimension- six and -eight operators directly contributing to the triple gauge boson vertices. Our results show that the impact of dimension-eight operators in the study of triple gauge couplings is small. 
    more » « less
  3. Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential. 
    more » « less