skip to main content

Search for: All records

Creators/Authors contains: "Reina, Celia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. “Viscosity is the most ubiquitous dissipative mechanical behavior” (Maugin, 1999). Despite its ubiquity, even for those systems where the mechanisms causing viscous and other forms of dissipation are known there are only a few quantitative models that extract the macroscopic rheological response from these microscopic mechanisms. One such mechanism is the stochastic breaking and forming of bonds which is present in polymer networks with transient cross-links, strong inter-layer bonding between graphene sheets, and sliding dry friction. In this paper we utilize a simple yet flexible model to show analytically how stochastic bonds can induce an array of rheological behaviors at the macroscale. We find that varying the bond interactions induces a Maxwell-type macroscopic material behavior with Newtonian viscosity, shear thinning, shear thickening, or solid like friction when subjected to shear at constant rates. When bond rupture is independent of the force applied, Newtonian viscosity is the predominant behavior. When bond breaking is accelerated by the applied force, a shear thinning response becomes most prevalent. Further connections of the macroscopic response to the interaction potential and rates of bonding and unbonding are illustrated through phase diagrams and analysis of limiting cases. Finally, we apply this model to polymer networks and tomore »experimental data on “solid bridges” in polydisperse granular media. We imagine possible applications to material design through engineering bonds with specific interactions to bring about a desired macroscopic behavior.« less
  2. Displacive transformations in colloidal crystals may offer a pathway for increasing the diversity of accessible configurations without the need to engineer particle shape or interaction complexity. To date, binary crystals composed of spherically symmetric particles at specific size ratios have been formed that exhibit floppiness and facile routes for transformation into more rigid structures that are otherwise not accessible by direct nucleation and growth. There is evidence that such transformations, at least at the micrometer scale, are kinetically influenced by concomitant solvent motion that effectively induces hydrodynamic correlations between particles. Here, we study quantitatively the impact of such interactions on the transformation of binary bcc-CsCl analog crystals into close-packed configurations. We first employ principal-component analysis to stratify the explorations of a bcc-CsCl crystallite into orthogonal directions according to displacement. We then compute diffusion coefficients along the different directions using several dynamical models and find that hydrodynamic correlations, depending on their range, can either enhance or dampen collective particle motions. These two distinct effects work synergistically to bias crystallite deformations toward a subset of the available outcomes.