Low temperature plasmas are open driven thermodynamic systems capable of increasing the free energy of the mass that flows through them. An interesting thing about low temperature plasmas is that different species have different temperatures at the same location in space. Since thermal equilibrium cannot be assumed, many of the familiar results of equilibrium thermodynamics cannot be applied in their familiar form to predict, e.g., the direction of a chemical reaction. From the perspective of classical processing governed by thermal equilibrium, examples of highly unexpected gas-phase chemical reactions (CO2 dissociation, NO, N2H4, O3 synthesis) and solid material transformations (surface activation, size-focusing, and hyperdoping) promoted by low temperature plasmas are presented. The lack of a known chemical reaction equilibrium criterion prevents assessment of predictive kinetics models of low temperature plasmas, to ensure that they comply with the laws of thermodynamics. There is a need for a general method to predict chemical reaction equilibrium in low temperature plasmas or an alternative method to establish the thermodynamic admissibility of a proposed kinetics model. Toward those ends, two ideas are explored in this work. The first idea is that chemical reactions in low temperature plasmas proceed toward a thermal equilibrium state at an effective temperature intermediate between the neutral gas temperature and the electron temperature. The effective temperature hypothesis is simple, and surprisingly is adequate for elucidation in some systems, but it lacks generality. The general equation for nonequilibrium reversible–irreversible coupling (GENERIC) is a general beyond equilibrium thermodynamics framework that can be used to rigorously establish the thermodynamic admissibility of a set of dynamic modeling equations, such as a kinetic model, without knowledge of the final state that the system is tending toward. The use of GENERIC is described by way of example using a two-temperature hydrodynamic model from the literature. The conclusion of the GENERIC analysis presented in this work is that the concept of superlocal equilibrium is thermodynamically admissible and may be applied to describe low temperature plasmas, provided that appropriate terms are included for exchange of internal energy and momentum between different species that may have different temperatures and bulk velocities at the same location in space. The concept of superlocal equilibrium is expected to be of utility in future work focused on deriving equilibrium criteria for low temperature plasmas.
more »
« less
A statistical mechanics framework for constructing nonequilibrium thermodynamic models
Far-from-equilibrium phenomena are critical to all natural and engineered systems, and essential to biological processes responsible for life. For over a century and a half, since Carnot, Clausius, Maxwell, Boltzmann, and Gibbs, among many others, laid the foundation for our understanding of equilibrium processes, scientists and engineers have dreamed of an analogous treatment of nonequilibrium systems. But despite tremendous efforts, a universal theory of nonequilibrium behavior akin to equilibrium statistical mechanics and thermodynamics has evaded description. Several methodologies have proved their ability to accurately describe complex nonequilibrium systems at the macroscopic scale, but their accuracy and predictive capacity is predicated on either phenomenological kinetic equations fit to microscopic data or on running concurrent simulations at the particle level. Instead, we provide a novel framework for deriving stand-alone macroscopic thermodynamic models directly from microscopic physics without fitting in overdamped Langevin systems. The only necessary ingredient is a functional form for a parameterized, approximate density of states, in analogy to the assumption of a uniform density of states in the equilibrium microcanonical ensemble. We highlight this framework’s effectiveness by deriving analytical approximations for evolving mechanical and thermodynamic quantities in a model of coiled-coil proteins and double-stranded DNA, thus producing, to the authors’ knowledge, the first derivation of the governing equations for a phase propagating system under general loading conditions without appeal to phenomenology. The generality of our treatment allows for application to any system described by Langevin dynamics with arbitrary interaction energies and external driving, including colloidal macromolecules, hydrogels, and biopolymers.
more »
« less
- Award ID(s):
- 2047506
- PAR ID:
- 10514864
- Editor(s):
- Sharma, Pradeep
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 2
- Issue:
- 12
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding the role of nonequilibrium driving in self-organization is crucial for developing a predictive description of biological systems, yet it is impeded by their complexity. The actin cytoskeleton serves as a paradigm for how equilibrium and nonequilibrium forces combine to give rise to self-organization. Motivated by recent experiments that show that actin filament growth rates can tune the morphology of a growing actin bundle cross-linked by two competing types of actin-binding proteins [S. L. Freedman et al. , Proc. Natl. Acad. Sci. U.S.A. 116, 16192–16197 (2019)], we construct a minimal model for such a system and show that the dynamics of a growing actin bundle are subject to a set of thermodynamic constraints that relate its nonequilibrium driving, morphology, and molecular fluxes. The thermodynamic constraints reveal the importance of correlations between these molecular fluxes and offer a route to estimating microscopic driving forces from microscopy experiments.more » « less
-
Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. They involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry. Yet, their efficient computation has remained elusive, as they depend on the system’s unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework to estimate the score of this density. We show that the score, together with the microscopic equations of motion, gives access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles. To represent the score, we introduce a spatially local transformer network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of active particles undergoing motility-induced phase separation (MIPS). We show that a single network trained on a system of 4,096 particles at one packing fraction can generalize to other regions of the phase diagram, including to systems with as many as 32,768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.more » « less
-
Nonequilibrium interfacial thermodynamics has important implications for crucial biological, physical, and industrial-scale transport processes. Here, we discuss a theory of local equilibrium for multiphase multicomponent interfaces that builds upon the “sharp” interface concept first introduced by Gibbs, allowing for a description of nonequilibrium interfacial processes such as those arising in evaporation, condensation, adsorption, etc. By requiring that the thermodynamics be insensitive to the precise location of the dividing surface, one can identify conditions for local equilibrium and develop methods for measuring the values of intensive variables at the interface. We then use extensive, high-precision nonequilibrium molecular dynamics (NEMD) simulations to verify the theory and establish the validity of the local equilibrium hypothesis. In particular, we demonstrate that equilibrium equations of state are also valid out of equilibrium, and can be used to determine interfacial temperature and chemical potential(s) that are consistent with nonequilibrium generalizations of the Clapeyron and Gibbs adsorption equations. We also show, for example, that, far from equilibrium, temperature or chemical potential differences need not be uniform across an interface and may instead exhibit pronounced discontinuities. However, even in these circumstances, we demonstrate that the local equilibrium hypothesis and its implications remain valid. These results provide a thermodynamic foundation and computational tools for studying or revisiting a wide variety of interfacial transport phenomena.more » « less
-
The global steady state of a system in thermal equilibrium exponentially favors configurations with lesser energy. This principle is a powerful explanation of self-organization because energy is a local property of configurations. For nonequilibrium systems, there is no such property for which an analogous principle holds, hence no common explanation of the diverse forms of self-organization they exhibit. However, a flurry of recent empirical results has shown that a local property of configurations called “rattling” predicts the steady states of some nonequilibrium systems, leading to claims of a far-reaching principle of nonequilibrium self-organization. But for which nonequilibrium systems is rattling accurate, and why? We develop a theory of rattling in terms of Markov processes that gives simple and precise answers to these key questions. Our results show that rattling predicts a broader class of nonequilibrium steady states than has been claimed and for different reasons than have been suggested. Its predictions hold to an extent determined by the relative variance of, and correlation between, the local and global “parts” of a steady state. We show how these quantities characterize the local-global relationships of various random walks on random graphs, spin-glass dynamics, and models of animal collective behavior. Surprisingly, we find that the core idea of rattling is so general as to apply to equilibrium and nonequilibrium systems alike.more » « less
An official website of the United States government

