skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reiter, MK"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cryptocurrency introduces usability challenges by requiring users to manage signing keys. Popular signing key management services (e.g., custodial wallets), however, either introduce a trusted party or burden users with managing signing key shares, posing the same usability challenges. TEE (Trusted Execution Environment) is a promising technology to avoid both, but practical implementations of TEEs suffer from various side-channel attacks that have proven hard to eliminate. This paper explores a new approach to side-channel mitigation through economic incentives for TEE-based cryptocurrency wallet solutions. By taking the cost and profit of side-channel attacks into consideration, we designed a Stick-and-Carrot-based cryptocurrency wallet, CrudiTEE, that leverages penalties (the stick) and rewards (the carrot) to disincentivize attackers from exfiltrating signing keys in the first place. We model the attacker’s behavior using a Markov Decision Process (MDP) to evaluate the effectiveness of the bounty and enable the service provider to adjust the parameters of the bounty’s reward function accordingly. 
    more » « less
    Free, publicly-accessible full text available September 23, 2025
  2. The sizes of objects retrieved over the network are powerful indicators of the objects retrieved and are ingredients in numerous types of traffic analysis, such as webpage fingerprinting. We present an algorithm by which a benevolent object store computes a memoryless padding scheme to pad objects before sending them, in a way that bounds the information gain that the padded sizes provide to the network observer about the objects being retrieved. Moreover, our algorithm innovates over previous works in two critical ways. First, the computed padding scheme satisfies constraints on the padding overhead: no object is padded to more than c× its original size, for a tunable factor c > 1. Second, the privacy guarantees of the padding scheme allow for object retrievals that are not independent, as could be caused by hyperlinking. We show in empirical tests that our padding schemes improve dramatically over previous schemes for padding dependent object retrievals, providing better privacy at substantially lower padding overhead, and over known techniques for padding independent object retrievals subject to padding overhead constraints. 
    more » « less
    Free, publicly-accessible full text available August 14, 2025