skip to main content

Search for: All records

Creators/Authors contains: "Rekabdar, Banafsheh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2024
  2. Free, publicly-accessible full text available September 25, 2024
  3. An efficient feature selection method can significantly boost results in classification problems. Despite ongoing improvement, hand-designed methods often fail to extract features capturing high- and mid-level representations at effective levels. In machine learning (Deep Learning), recent developments have improved upon these hand-designed methods by utilizing automatic extraction of features. Specifically, Convolutional Neural Networks (CNNs) are a highly successful technique for image classification which can automatically extract features, with ongoing learning and classification of these features. The purpose of this study is to detect hydraulic structures (i.e., bridges and culverts) that are important to overland flow modeling and environmental applications. The dataset used in this work is a relatively small dataset derived from 1-m LiDAR-derived Digital Elevation Models (DEMs) and National Agriculture Imagery Program (NAIP) aerial imagery. The classes for our experiment consist of two groups: the ones with a bridge/culvert being present are considered "True", and those without a bridge/culvert are considered "False". In this paper, we use advanced CNN techniques, including Siamese Neural Networks (SNNs), Capsule Networks (CapsNets), and Graph Convolutional Networks (GCNs), to classify samples with similar topographic and spectral characteristics, an objective which is challenging utilizing traditional machine learning techniques, such as Support Vector Machine (SVM), Gaussian Classifier (GC), and Gaussian Mixture Model (GMM). The advanced CNN-based approaches combined with data pre-processing techniques (e.g., data augmenting) produced superior results. These approaches provide efficient, cost-effective, and innovative solutions to the identification of hydraulic structures. 
    more » « less
  4. Abstract

    Delineating accurate flowlines using digital elevation models is a critical step for overland flow modeling. However, extracting surface flowlines from high‐resolution digital elevation models (HRDEMs) can be biased, partly due to the absence of information on the locations of anthropogenic drainage structures (ADS) such as bridges and culverts. Without the ADS, the roads may act as “digital dams” that prevent accurate delineation of flowlines. However, it is unclear what variables for terrain‐based hydrologic modeling can be used to mitigate the effect of “digital dams.” This study assessed the impacts of ADS locations, spatial resolution, depression processing methods, and flow direction algorithms on hydrologic connectivity in an agrarian landscape of Nebraska. The assessment was conducted based on the offset distances between modeled drainage crossings and actual ADS on the road. Results suggested that: (a) stream burning in combination with the D8 or D‐Infinity flow direction algorithm is the best option for modeling surface flowlines from HRDEMs in an agrarian landscape; (b) increasing the HRDEM resolution was found significant for facilitating accurate drainage crossing near ADS locations; and (c) D8 and D‐Infinity flow direction algorithms resulted in similar patterns of drainage crossing at ADS locations. This research is expected to result in improved parameter settings for HRDEMs‐based hydrologic modeling.

    more » « less