Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Ceramics derived from organic polymer precursors, which have exceptional mechanical and chemical properties that are stable up to temperatures slightly below 2000 °C, are referred to as polymer-derived ceramics (PDCs). These molecularly designed amorphous ceramics have the same high mechanical and chemical properties as conventional powder-based ceramics, but they also demonstrate improved oxidation resistance and creep resistance and low pyrolysis temperature. Since the early 1970s, PDCs have attracted widespread attention due to their unique microstructures, and the benefits of polymeric precursors for advanced manufacturing techniques. Depending on various doping elements, molecular configurations, and microstructures, PDCs may also be beneficial for electrochemical applications at elevated temperatures that exceed the applicability of other materials. However, the microstructural evolution, or the conversion, segregation, and decomposition of amorphous nanodomain structures, decreases the reliability of PDC products at temperatures above 1400 °C. This review investigates structure-related properties of PDC products at elevated temperatures close to or higher than 1000 °C, including manufacturing production, and challenges of high-temperature PDCs. Analysis and future outlook of high-temperature structural and electrical applications, such as fibers, ceramic matrix composites (CMCs), microelectromechanical systems (MEMSs), and sensors, within high-temperature regimes are also discussed.more » « less
-
null (Ed.)Electrospinning is an emerging technique for synthesizing micron to submicron-sized polymer fibre supports for applications in energy storage, catalysis, filtration, drug delivery and so on. However, fabrication of electrospun ceramic fibre mats for use as a reinforcement phase in ceramic matrix composites or CMCs for aerospace applications remains largely unexplored. This is mainly due to stringent operating requirements that require a combination of properties such as low mass density, high strength, and ultrahigh temperature resistance. Herein we report fabrication of molecular precursor-derived silicon oxycarbide or SiOC fibre mats via electrospinning and pyrolysis of cyclic polysiloxanes-based precursors at significantly lower weight loadings of organic co-spin agent. Ceramic fibre mats, which were free of wrapping, were prepared by a one-step spinning (in air) and post heat-treatment for crosslinking and pyrolysis (in argon at 800 °C). The pyrolyzed fibre mats were revealed to be amorphous and a few microns in diameter. Four siloxane-based pre-ceramic polymers were used to study the influence of precursor molecular structure on the compositional and morphological differences of cross-linked and pyrolyzed products. Further thermal characterization suggested the potential of electrospun ceramic mats in high temperature applications.more » « less
-
Superalloy turbine blades for gas turbines may have been the most significant energy and transportation technology development in the last century. It empowered our military prowess, made it possible for civilian aircraft to fly halfway around the world, and now single-crystal blades are employed in gas turbines for energy conversion because of their superior creep resistance over traditional polycrystal alloys.more » « less
-
Superior electrochemical performance, structural stability, facile integration, and versatility are desirable features of electrochemical energy storage devices. The increasing need for high‐power, high‐energy devices has prompted the investigation of manufacturing technologies that can produce structured battery and supercapacitor electrodes with optimized charge transport. While conventional electrode production techniques are becoming increasingly obsolete and incompatible with technological developments such as wearables and flexible electronics, additive manufacturing (AM) has emerged as one of several state‐of‐the‐art tools to produce 3D‐structured electrodes with morphology control, high yield, and scalability. Herein, a comprehensive review of the major AM technologies and most recent literature about designing and manufacturing electrode materials for batteries and supercapacitors is presented. A thorough discussion of research opportunities and challenges in this promising field is also presented to introduce the potential and importance of AM to current developments involving electrode materials.