skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Resing, Joseph A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transport processes along the river-ocean continuum influence delivery of nutrients, carbon and trace metals from terrestrial systems to the marine environment, impacting coastal primary productivity and water quality. Although trace metal transformations have been studied extensively in the Mississippi River Delta region of the Northern Gulf of Mexico, investigations of manganese (Mn) and the presence of ligand-stabilized, dissolved manganese (Mn(III)-L) and its role in the transformation of trace elements and organic matter during riverine transport and estuarine mixing have not been considered. This study examined the chemical speciation of dissolved and particulate Mn in the water column and sediment porewaters in the Mississippi River and Northern Gulf of Mexico in March of 2021 to explore transformations in Mn speciation along the river-ocean continuum and the impact of different processes on the distribution of Mn. Total dissolved Mn concentrations were highest in the Mississippi River and decreased offshore, while Mn(III)-L contributed most to the dissolved Mn pool in near-shore waters. Porewater profiles indicated that ligand stabilization prevented dissolved Mn(III) reduction below the depth of oxygen penetration and in the presence of equimolar dissolved iron(II). Dissolved Mn(III)-L was enriched in bottom waters at all Northern Gulf of Mexico stations, and diffusive flux modelling of porewater dissolved Mn suggested that reducing sediments were a source of dissolved Mn to the overlying water column in the form of both reduced Mn(II) and Mn(III)-L. A simple box model of the Mn cycle in the Northern Gulf of Mexico indicates that Mn(III)-L is required to balance the Mn budget in this region and is an integral, and previously unconsidered, piece of the Mn cycle in the Northern Gulf of Mexico. The presence of Mn(III)-L in this system likely has an outsized impact on trace element scavenging rates, oxidative capacity, and the carbon cycle that have not been previously appreciated. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract. Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is knownto be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) toexcess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive toassumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, forfour vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range ofdFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for backgroundxs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying thisapproach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, LuckyStrike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simplyrelated to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe wasconsistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchangebetween dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe releasedfrom vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume withinthe deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required toescape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with thefrequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in globalbiogeochemical models will be key to further constraining the hydrothermal Fe flux. 
    more » « less
  3. Abstract The dispersal of dissolved iron (DFe) from hydrothermal vents is poorly constrained. Combining field observations and a modeling hierarchy, we find the dispersal of DFe from the Trans‐Atlantic‐Geotraverse vent site occurs predominantly in the colloidal phase and is controlled by multiple physical processes. Enhanced mixing near the seafloor and transport through fracture zones at fine‐scales interacts with the wider ocean circulation to drive predominant westward DFe dispersal away from the Mid‐Atlantic ridge at the 100 km scale. In contrast, diapycnal mixing predominantly drives northward DFe transport within the ridge axial valley. The observed DFe dispersal is not reproduced by the coarse resolution ocean models typically used to assess ocean iron cycling due to their omission of local topography and mixing. Unless biogeochemical models account for fine‐scale physics and colloidal Fe, they will inaccurately represent DFe dispersal from axial valley ridge systems, which make up half of the global ocean ridge crest. 
    more » « less