Abstract. Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is knownto be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) toexcess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive toassumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, forfour vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range ofdFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for backgroundxs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying thisapproach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, LuckyStrike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simplyrelated to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe wasconsistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchangebetween dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe releasedfrom vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume withinthe deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required toescape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with thefrequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in globalbiogeochemical models will be key to further constraining the hydrothermal Fe flux.
more »
« less
Mechanisms Driving the Dispersal of Hydrothermal Iron From the Northern Mid Atlantic Ridge
Abstract The dispersal of dissolved iron (DFe) from hydrothermal vents is poorly constrained. Combining field observations and a modeling hierarchy, we find the dispersal of DFe from the Trans‐Atlantic‐Geotraverse vent site occurs predominantly in the colloidal phase and is controlled by multiple physical processes. Enhanced mixing near the seafloor and transport through fracture zones at fine‐scales interacts with the wider ocean circulation to drive predominant westward DFe dispersal away from the Mid‐Atlantic ridge at the 100 km scale. In contrast, diapycnal mixing predominantly drives northward DFe transport within the ridge axial valley. The observed DFe dispersal is not reproduced by the coarse resolution ocean models typically used to assess ocean iron cycling due to their omission of local topography and mixing. Unless biogeochemical models account for fine‐scale physics and colloidal Fe, they will inaccurately represent DFe dispersal from axial valley ridge systems, which make up half of the global ocean ridge crest.
more »
« less
- Award ID(s):
- 1840868
- PAR ID:
- 10385596
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 22
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract New trace element abundances and isotope compositions for more than 100 mid‐ocean ridge basalts from 5.5°N to 19°N on the East Pacific Rise show step function variations in isotopic composition along the ridge axis that coincide with ridge discontinuities. Transform faults, overlapping spreading centers, and devals (deviation from axial linearity) mark the separation of individual clusters of distinct isotopic composition and trace element ratios that indicate source variations. This correlated chemical clustering and morphological segmentation indicates that source composition and segmentation can be closely related even on a fine scale. Substantial chemical variations within a segment are related to source composition. This suggests that even within segments the magma transport is mainly vertical, and there is limited along‐ridge transport, and there is little evidence for magma chambers that are well mixed along strike. Trace element concentrations show good correlations with isotopic compositions on a segment scale but less so on a regional scale. The trace element and isotopic variability along the northern East Pacific Rise can be explained by three mantle components: a depleted peridotite endmember, an enriched peridotite endmember, and a recycled gabbro‐like component. The gabbroic component has an isotopic signature indicating an ancient origin. The high‐resolution sampling indicates that within a segment the chemical variability is largely binary but that the endmembers of the binary mixing change from segment to segment. The endmembers of the binary variation within a segment are a combination of three of the endmembers.more » « less
-
Abstract Observations of dissolved iron (dFe) in the subtropical North Atlantic revealed remarkable features: While the near‐surface dFe concentration is low despite receiving high dust deposition, the subsurface dFe concentration is high. We test several hypotheses that might explain this feature in an ocean biogeochemistry model with a refined Fe cycling scheme. These hypotheses invoke a stronger lithogenic scavenging rate, rapid biological uptake, and a weaker binding between Fe and a ubiquitous, refractory ligand. While the standard model overestimates the surface dFe concentration, a 10‐time stronger biological uptake run causes a slight reduction in the model surface dFe. A tenfold decrease in the binding strength of the refractory ligand, suggested by recent observations, starts reproducing the observed dFe pattern, with a potential impact for the global nutrient distribution. An extreme value for the lithogenic scavenging rate can also match the model dFe with observations, but this process is still poorly constrained.more » « less
-
The importance of dissolved Fe (dFe) in regulating ocean primary production and the carbon cycle is well established. However, the large-scale distribution and temporal dynamics of dFe remain poorly constrained in part due to incomplete observational coverage. In this study, we use a compilation of published dFe observations (n=32,344) with paired environmental predictors from contemporaneous satellite observations and reanalysis products to build a data-driven surface-to-seafloor dFe climatology with 1°×1° resolution using three machine-learning approaches (random forest, supper vector machine and artificial neural network). Among the three approaches, random forest achieves the highest accuracy with overall R 2 and root mean standard error of 0.8 and 0.3 nmol L -1 , respectively. Using this data-driven climatology, we explore the possible mechanisms governing the dFe distribution at various depth horizons using statistical metrics such as Pearson correlation coefficients and the rank of predictors importance in the model construction. Our results are consistent with the critical role of aeolian iron supply in enriching surface dFe in the low latitude regions and suggest a far-reaching impact of this source at depth. Away from the surface layer, the strong correlation between dFe and apparent oxygen utilization implies that a combination of regeneration, scavenging and large-scale ocean circulation are controlling the interior distribution of dFe, with hydrothermal inputs important in some regions. Finally, our data-driven dFe climatology can be used as an alternative reference to evaluate the performance of ocean biogeochemical models. Overall, the new global scale climatology of dFe achieved in our study is an important step toward improved representation of dFe in the contemporary ocean and may also be used to guide future sampling strategies.more » « less
-
The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust.more » « less