skip to main content


Title: Mechanisms Driving the Dispersal of Hydrothermal Iron From the Northern Mid Atlantic Ridge
Abstract

The dispersal of dissolved iron (DFe) from hydrothermal vents is poorly constrained. Combining field observations and a modeling hierarchy, we find the dispersal of DFe from the Trans‐Atlantic‐Geotraverse vent site occurs predominantly in the colloidal phase and is controlled by multiple physical processes. Enhanced mixing near the seafloor and transport through fracture zones at fine‐scales interacts with the wider ocean circulation to drive predominant westward DFe dispersal away from the Mid‐Atlantic ridge at the 100 km scale. In contrast, diapycnal mixing predominantly drives northward DFe transport within the ridge axial valley. The observed DFe dispersal is not reproduced by the coarse resolution ocean models typically used to assess ocean iron cycling due to their omission of local topography and mixing. Unless biogeochemical models account for fine‐scale physics and colloidal Fe, they will inaccurately represent DFe dispersal from axial valley ridge systems, which make up half of the global ocean ridge crest.

 
more » « less
Award ID(s):
1840868
NSF-PAR ID:
10385596
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is knownto be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) toexcess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive toassumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, forfour vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range ofdFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for backgroundxs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying thisapproach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, LuckyStrike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simplyrelated to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe wasconsistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchangebetween dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe releasedfrom vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume withinthe deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required toescape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with thefrequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in globalbiogeochemical models will be key to further constraining the hydrothermal Fe flux. 
    more » « less
  2. Abstract

    New trace element abundances and isotope compositions for more than 100 mid‐ocean ridge basalts from 5.5°N to 19°N on the East Pacific Rise show step function variations in isotopic composition along the ridge axis that coincide with ridge discontinuities. Transform faults, overlapping spreading centers, and devals (deviation from axial linearity) mark the separation of individual clusters of distinct isotopic composition and trace element ratios that indicate source variations. This correlated chemical clustering and morphological segmentation indicates that source composition and segmentation can be closely related even on a fine scale. Substantial chemical variations within a segment are related to source composition. This suggests that even within segments the magma transport is mainly vertical, and there is limited along‐ridge transport, and there is little evidence for magma chambers that are well mixed along strike. Trace element concentrations show good correlations with isotopic compositions on a segment scale but less so on a regional scale. The trace element and isotopic variability along the northern East Pacific Rise can be explained by three mantle components: a depleted peridotite endmember, an enriched peridotite endmember, and a recycled gabbro‐like component. The gabbroic component has an isotopic signature indicating an ancient origin. The high‐resolution sampling indicates that within a segment the chemical variability is largely binary but that the endmembers of the binary mixing change from segment to segment. The endmembers of the binary variation within a segment are a combination of three of the endmembers.

     
    more » « less
  3. Abstract

    We use ocean bottom seismometer data from the Endeavour segment of the Juan de Fuca ridge to construct a long‐term earthquake catalog for an intermediate spreading rate mid‐ocean ridge. We present >50,000 new earthquake locations for 2016–2021 from the Ocean Networks Canada NEPTUNE cabled observatory and relocate earthquakes from two autonomous networks in 1995 and 2003–2006. The catalog comprises >85,000 earthquakes located using three‐dimensional segment‐scalePandSwave velocity models from a prior tomography experiment. Despite the small footprints of networks near the segment center, locations show good agreement with geologic features at segment ends. The improved locations show that the northern Endeavour segment ruptured southwards from 48.3°N to 48.05°N during two diking events in early 2005, possibly accompanied by diking on the West Valley (WV) propagator. Persistent off‐axis seismicity near the segment center appears to be related to the WV and Cobb propagating rifts which we infer extend ∼10 km closer to the Endeavour segment center than is apparent in bathymetry. We suggest that the proximity of the propagators to the Endeavour vent fields (VFs) contributes to the localization, vigor, and longevity of the fields by focusing permeability through ongoing fracturing and by limiting extrusive magmatism through degassing of the axial magma lens. Increasing rates of seismicity beneath the VFs beginning in late 2018 and a deepening of earthquakes in 2020 indicate that the central portion of the segment may be entering the later stages of the eruptive cycle.

     
    more » « less
  4. Abstract

    Seven three‐component ocean bottom seismometers (OBS) of the Ocean Observatories Initiative (OOI) Cabled Array on top of Axial Seamount are continuously streaming data in real time to the Incorporated Research Institutions for Seismology (IRIS). The OBS array records earthquakes from the submarine volcano which last erupted on 24 April 2015, about 4 months after the array came online. The OBS data have proven crucial in providing insight into the volcano structure and dynamics (Wilcock et al., 2016,https://doi.org/10.1126/science.aah5563). We implemented a real‐time double‐difference (RT‐DD) monitoring system that automatically computes high‐precision (tens of meters) locations of new earthquakes. The system's underlying double‐difference base catalog includes nearly 100,000 earthquakes and was computed using kurtosis phase onset picks, cross‐correlation phase delay times, and 3‐DPandSvelocity models to predict the data. The relocations reveal the fine‐scale structures of long‐lived, narrow (<200 m wide), outward dipping, convex faults on the east and west walls of the caldera that appear to form a figure 8‐shaped ring fault system. These faults accommodate stresses caused by the inflation of magma prior to and deflation during eruptions. The east fault is segmented and pulled apart in east‐west direction due to its interaction with the Juan de Fuca Ridge, which at this location forms an overlapping spreading center. The RT‐DD system enables the monitoring and rapid analysis of variations in fine‐scale seismic and fault properties and has the potential to improve prediction of timing and location of the next Axial eruption expected to occur in the 2022–2023 time frame.

     
    more » « less
  5. The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust. 
    more » « less