Wind-fed models offer a unique way to form predictive models of the accretion flow surrounding Sagittarius A*. We present 3D wind-fed magnetohydrodynamic (MHD) and general relativistic magnetohydrodynamic (GRMHD) simulations spanning the entire dynamic range of accretion from parsec scales to the event horizon. We expand on previous work by including non-zero black hole spin and dynamically evolved electron thermodynamics. Initial conditions for these simulations are generated from simulations of the observed Wolf–Rayet stellar winds in the Galactic Centre. The resulting flow tends to be highly magnetized (β ≈ 2) with an ∼r−1 density profile independent of the strength of magnetic fields in the winds. Our simulations reach the magnetically arrested disc (MAD) state for some, but not all cases. In tilted flows, standard and normal evolution (SANE) jets tend to align with the angular momentum of the gas at large scales, even if that direction is perpendicular to the black hole spin axis. Conversely, MAD jets tend to align with the black hole spin axis. The gas angular momentum shows similar behaviour: SANE flows tend to only partially align while MAD flows tend to fully align. With a limited number of dynamical free parameters, our models can produce accretion rates, 230 GHz flux, and unresolved linear polarization fractions roughly consistent with observations for several choices of electron heating fraction. Absent another source of large-scale magnetic field, winds with a higher degree of magnetization (e.g. where the magnetic pressure is 1/100 of the ram pressure in the winds) may be required to get a sufficiently large rotation measure with consistent sign.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT We study the flow structure in 3D magnetohydrodynamic (MHD) simulations of accretion on to Sagittarius A* via the magnetized winds of the orbiting Wolf–Rayet stars. These simulations cover over 3 orders of magnitude in radius to reach ≈300 gravitational radii, with only one poorly constrained parameter (the magnetic field in the stellar winds). Even for winds with relatively weak magnetic fields (e.g. plasma β ∼ 106), flux freezing/compression in the inflowing gas amplifies the field to β ∼ few well before it reaches the event horizon. Overall, the dynamics, accretion rate, and spherically averaged flow profiles (e.g. density, velocity) in our MHD simulations are remarkably similar to analogous hydrodynamic simulations. We attribute this to the broad distribution of angular momentum provided by the stellar winds, which sources accretion even absent much angular momentum transport. We find that the magneto-rotational instability is not important because of (i) strong magnetic fields that are amplified by flux freezing/compression, and (ii) the rapid inflow/outflow times of the gas and inefficient radiative cooling preclude circularization. The primary effect of magnetic fields is that they drive a polar outflow that is absent in hydrodynamics. The dynamical state of the accretion flow found in our simulations is unlike the rotationally supported tori used as initial conditions in horizon scale simulations, which could have implications for models being used to interpret Event Horizon Telescope and GRAVITY observations of Sgr A*.more » « less
-
ABSTRACT We present 3D general relativistic magnetohydrodynamic simulations of zero angular momentum accretion around a rapidly rotating black hole, modified by the presence of initially uniform magnetic fields. We consider several angles between the magnetic field direction and the black hole spin. In the resulting flows, the mid-plane dynamics are governed by magnetic reconnection-driven turbulence in a magnetically arrested (or a nearly arrested) state. Electromagnetic jets with outflow efficiencies ∼10–200 per cent occupy the polar regions, reaching several hundred gravitational radii before they dissipate due to the kink instability. The jet directions fluctuate in time and can be tilted by as much as ∼30○ with respect to black hole spin, but this tilt does not depend strongly on the tilt of the initial magnetic field. A jet forms even when there is no initial net vertical magnetic flux since turbulent, horizon-scale fluctuations can generate a net vertical field locally. Peak jet power is obtained for an initial magnetic field tilted by 40○–80○ with respect to the black hole spin because this maximizes the amount of magnetic flux that can reach the black hole. These simulations may be a reasonable model for low luminosity black hole accretion flows such as Sgr A* or M87.more » « less
-
null (Ed.)ABSTRACT Large-amplitude Sgr A* near-infrared (NIR) flares result from energy injection into electrons near the black hole event horizon. Astrometry data show continuous rotation of the emission region during bright flares, and corresponding rotation of the linear polarization angle. One broad class of physical flare models invokes magnetic reconnection. Here, we show that such a scenario can arise in a general relativistic magnetohydrodynamic simulation of a magnetically arrested disc. Saturation of magnetic flux triggers eruption events, where magnetically dominated plasma is expelled from near the horizon and forms a rotating, spiral structure. Dissipation occurs via reconnection at the interface of the magnetically dominated plasma and surrounding fluid. This dissipation is associated with large increases in NIR emission in models of Sgr A*, with durations and amplitudes consistent with the observed flares. Such events occur at roughly the time-scale to re-accumulate the magnetic flux from the inner accretion disc, ≃10 h for Sgr A*. We study NIR observables from one sample event to show that the emission morphology tracks the boundary of the magnetically dominated region. As the region rotates around the black hole, the NIR centroid and linear polarization angle both undergo continuous rotation, similar to the behaviour seen in Sgr A* flares.more » « less