Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In June 2020, the tropical Atlantic and the Caribbean Basin were affected by a series of African dust outbreaks unprecedented in size and intensity. These events, informally named “Godzilla”, coincided with CALIMA, a large field campaign, offering a rare opportunity to assess the impact of African dust on air quality in the Greater Caribbean Basin. Network measurements of respirable particles (i.e., PM10and PM2.5) showed that dust significantly degraded regional air quality and increased the risk to public health in the Caribbean, the southern United States, northern South America, and Central America. CALIMA examined the meteorological context of Godzilla dust events over North Africa and how these conditions might relate to the greatly increased dust emissions and enhanced transport to the Americas. Godzilla was linked to strong pressure anomalies over West Africa, resulting in a large-scale geostrophic wind anomaly at 700 hPa over North Africa. We used surface-based and columnar measurements to test the performance of two frequently used aerosol forecast models: the NASA GEOS and WRF-Chem models. The models showed some skills, but differed substantially between their forecasts, suggesting large uncertainties in these forecasts that are critical for issuing early warnings of health-threatening dust events. Our results demonstrate the value of an integrated approach in characterizing the spatial and temporal variability of African dust transport and assessing its impact on regional air quality. Future studies are needed to improve models and to track the long-term changes in dust transport from Africa under a changing climate.more » « lessFree, publicly-accessible full text available May 14, 2026
-
Ford_Versypt, A; Segal, R; Sindi, S (Ed.)
-
We present numerical simulations used to interpret laser-driven plasma experiments at the GSI Helmholtz Centre for Heavy Ion Research. The mechanisms by which non-thermal particles are accelerated in astrophysical environments, e.g., the solar wind, supernova remnants, and gamma ray bursts, is a topic of intense study. When shocks are present, the primary acceleration mechanism is believed to be first-order Fermi, which accelerates particles as they cross a shock. Second-order Fermi acceleration can also contribute, utilizing magnetic mirrors for particle energization. Despite this mechanism being less efficient, the ubiquity of magnetized turbulence in the universe necessitates its consideration. Another acceleration mechanism is the lower-hybrid drift instability, arising from gradients of both density and magnetic field, which produce lower-hybrid waves with an electric field that energizes particles as they cross these waves. With the combination of high-powered laser systems and particle accelerators, it is possible to study the mechanisms behind cosmic-ray acceleration in the laboratory. In this work, we combine experimental results and high-fidelity three-dimensional simulations to estimate the efficiency of ion acceleration in a weakly magnetized interaction region. We validate the FLASH magneto-hydrodynamic code with experimental results and use OSIRIS particle-in-cell code to verify the initial formation of the interaction region, showing good agreement between codes and experimental results. We find that the plasma conditions in the experiment are conducive to the lower-hybrid drift instability, yielding an increase in energy ΔE of ∼ 264 keV for 242 MeV calcium ions.more » « less
-
Abstract Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.more » « less
An official website of the United States government

Full Text Available