Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Free, publiclyaccessible full text available November 1, 2024

Abstract We apply the method of orbit harmonics to the set of break divisors and orientable divisors on graphs to obtain the central and external zonotopal algebras, respectively. We then relate a construction of Efimov in the context of cohomological Hall algebras to the central zonotopal algebra of a graph $G_{Q,\gamma }$ constructed from a symmetric quiver $Q$ with enough loops and a dimension vector $\gamma $. This provides a concrete combinatorial perspective on the former work, allowing us to identify the quantum Donaldson–Thomas (DT) invariants as the Hilbert series of the space of $S_{\gamma }$invariants of the Postnikov–Shapiro slim subgraph space attached to $G_{Q,\gamma }$. The connection with orbit harmonics in turn allows us to give a manifestly nonnegative combinatorial interpretation to numerical DT invariants as the number of $S_{\gamma }$orbits under the permutation action on the set of break divisors on $G$. We conclude with several representationtheoretic consequences, whose combinatorial ramifications may be of independent interest.

Let $V_1, V_2, V_3, \dots $ be a sequence of $\mathbb {Q}$vector spaces where $V_n$ carries an action of $\mathfrak{S}_n$. Representation stability and multiplicity stability are two related notions of when the sequence $V_n$ has a limit. An important source of stability phenomena arises when $V_n$ is the $d^{th}$ homology group (for fixed $d$) of the configuration space of $n$ distinct points in some fixed topological space $X$. We replace these configuration spaces with moduli spaces of tuples $(W_1, \dots, W_n)$ of subspaces of a fixed complex vector space $\mathbb {C}^N$ such that $W_1 + \cdots + W_n = \mathbb {C}^N$. These include the varieties of spanning line configurations which are tied to the Delta Conjecture of symmetric function theory.more » « less

Abstract Let $\Theta _n = (\theta _1, \dots , \theta _n)$ and $\Xi _n = (\xi _1, \dots , \xi _n)$ be two lists of $n$ variables, and consider the diagonal action of ${{\mathfrak {S}}}_n$ on the exterior algebra $\wedge \{ \Theta _n, \Xi _n \}$ generated by these variables. Jongwon Kim and the 2nd author defined and studied the fermionic diagonal coinvariant ring$FDR_n$ obtained from $\wedge \{ \Theta _n, \Xi _n \}$ by modding out by the ideal generated by the ${{\mathfrak {S}}}_n$invariants with vanishing constant term. On the other hand, the 2nd author described an action of ${{\mathfrak {S}}}_n$ on the vector space with basis given by noncrossing set partitions of $\{1,\dots ,n\}$ using a novel family of skein relations that resolve crossings in set partitions. We give an isomorphism between a natural Catalandimensional submodule of $FDR_n$ and the skein representation. To do this, we show that set partition skein relations arise naturally in the context of exterior algebras. Our approach yields an ${{\mathfrak {S}}}_n$equivariant way to resolve crossings in set partitions. We use fermions to clarify, sharpen, and extend the theory of set partition crossing resolution.

Abstract The superspace ring $\Omega _n$ is a rank n polynomial ring tensored with a rank n exterior algebra. Using an extension of the Vandermonde determinant to $\Omega _n$ , the authors previously defined a family of doubly graded quotients ${\mathbb {W}}_{n,k}$ of $\Omega _n$ , which carry an action of the symmetric group ${\mathfrak {S}}_n$ and satisfy a bigraded version of Poincaré Duality. In this paper, we examine the duality modules ${\mathbb {W}}_{n,k}$ in greater detail. We describe a monomial basis of ${\mathbb {W}}_{n,k}$ and give combinatorial formulas for its bigraded Hilbert and Frobenius series. These formulas involve new combinatorial objects called ordered set superpartitions . These are ordered set partitions $(B_1 \mid \cdots \mid B_k)$ of $\{1,\dots ,n\}$ in which the nonminimal elements of any block $B_i$ may be barred or unbarred.more » « less