We apply the method of orbit harmonics to the set of break divisors and orientable divisors on graphs to obtain the central and external zonotopal algebras, respectively. We then relate a construction of Efimov in the context of cohomological Hall algebras to the central zonotopal algebra of a graph $G_{Q,\gamma }$ constructed from a symmetric quiver $Q$ with enough loops and a dimension vector $\gamma $. This provides a concrete combinatorial perspective on the former work, allowing us to identify the quantum Donaldson–Thomas (DT) invariants as the Hilbert series of the space of $S_{\gamma }$-invariants of the Postnikov–Shapiro slim subgraph space attached to $G_{Q,\gamma }$. The connection with orbit harmonics in turn allows us to give a manifestly nonnegative combinatorial interpretation to numerical DT invariants as the number of $S_{\gamma }$-orbits under the permutation action on the set of break divisors on $G$. We conclude with several representation-theoretic consequences, whose combinatorial ramifications may be of independent interest.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Free, publicly-accessible full text available September 1, 2023
-
Abstract Let $\Theta _n = (\theta _1, \dots , \theta _n)$ and $\Xi _n = (\xi _1, \dots , \xi _n)$ be two lists of $n$ variables, and consider the diagonal action of ${{\mathfrak {S}}}_n$ on the exterior algebra $\wedge \{ \Theta _n, \Xi _n \}$ generated by these variables. Jongwon Kim and the 2nd author defined and studied the fermionic diagonal coinvariant ring$FDR_n$ obtained from $\wedge \{ \Theta _n, \Xi _n \}$ by modding out by the ideal generated by the ${{\mathfrak {S}}}_n$-invariants with vanishing constant term. On the other hand, the 2nd author described an action of ${{\mathfrak {S}}}_n$ on the vector space with basis given by noncrossing set partitions of $\{1,\dots ,n\}$ using a novel family of skein relations that resolve crossings in set partitions. We give an isomorphism between a natural Catalan-dimensional submodule of $FDR_n$ and the skein representation. To do this, we show that set partition skein relations arise naturally in the context of exterior algebras. Our approach yields an ${{\mathfrak {S}}}_n$-equivariant way to resolve crossings in set partitions. We use fermions to clarify, sharpen, and extend the theory of set partition crossing resolution.
-
Abstract Let $W$ be an irreducible complex reflection group acting on its reflection representation $V$. We consider the doubly graded action of $W$ on the exterior algebra $\wedge (V \oplus V^*)$ as well as its quotient $DR_W:= \wedge (V \oplus V^*)/ \langle \wedge (V \oplus V^*)^{W}_+ \rangle $ by the ideal generated by its homogeneous $W$-invariants with vanishing constant term. We describe the bigraded isomorphism type of $DR_W$; when $W = {{\mathfrak{S}}}_n$ is the symmetric group, the answer is a difference of Kronecker products of hook-shaped ${{\mathfrak{S}}}_n$-modules. We relate the Hilbert series of $DR_W$ to the (type A) Catalan and Narayana numbers and describe a standard monomial basis of $DR_W$ using a variant of Motzkin paths. Our methods are type-uniform and involve a Lefschetz-like theory, which applies to the exterior algebra $\wedge (V \oplus V^*)$.
-
Abstract Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial$B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$-element subsets of $\{1, 2, \dots , n\}$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $B_{n,k}(X_n)$ for certain $k$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $B_{n,n-1}(X_n)$ to a bigraded action of the symmetric group ${\mathfrak{S}}_n$ on a divergence free quotient of superspace.