Abstract We construct a family of PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the positive subalgebras of quantum loop algebras of type $$B_{n}$$ and $$G_{2}$$, as well as their Lusztig and RTT (for type $$B_{n}$$ only) integral forms, in the new Drinfeld realization. We also establish a shuffle algebra realization of these $${\mathbb {Q}}(v)$$-algebras (proved earlier in [26] by completely different tools) and generalize the latter to the above $${{\mathbb {Z}}}[v,v^{-1}]$$-forms. The rational counterparts provide shuffle algebra realizations of positive subalgebras of type $$B_{n}$$ and $$G_{2}$$ Yangians and their Drinfeld-Gavarini duals. All of this generalizes the type $$A_{n}$$ results of [30].
more »
« less
Zonotopal Algebras, Orbit Harmonics, and Donaldson–Thomas Invariants of Symmetric Quivers
Abstract We apply the method of orbit harmonics to the set of break divisors and orientable divisors on graphs to obtain the central and external zonotopal algebras, respectively. We then relate a construction of Efimov in the context of cohomological Hall algebras to the central zonotopal algebra of a graph $$G_{Q,\gamma }$$ constructed from a symmetric quiver $$Q$$ with enough loops and a dimension vector $$\gamma $$. This provides a concrete combinatorial perspective on the former work, allowing us to identify the quantum Donaldson–Thomas (DT) invariants as the Hilbert series of the space of $$S_{\gamma }$$-invariants of the Postnikov–Shapiro slim subgraph space attached to $$G_{Q,\gamma }$$. The connection with orbit harmonics in turn allows us to give a manifestly nonnegative combinatorial interpretation to numerical DT invariants as the number of $$S_{\gamma }$$-orbits under the permutation action on the set of break divisors on $$G$$. We conclude with several representation-theoretic consequences, whose combinatorial ramifications may be of independent interest.
more »
« less
- Award ID(s):
- 2246846
- PAR ID:
- 10402429
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2023
- Issue:
- 23
- ISSN:
- 1073-7928
- Format(s):
- Medium: X Size: p. 20169-20210
- Size(s):
- p. 20169-20210
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We establish an implication between two long-standing open problems in complex dynamics. The roots of the $$n$$th Gleason polynomial $$G_{n}\in{\mathbb{Q}}[c]$$ comprise the $$0$$-dimensional moduli space of quadratic polynomials with an $$n$$-periodic critical point. $$\operatorname{Per}_{n}(0)$$ is the $$1$$-dimensional moduli space of quadratic rational maps on $${\mathbb{P}}^{1}$$ with an $$n$$-periodic critical point. We show that if $$G_{n}$$ is irreducible over $${\mathbb{Q}}$$, then $$\operatorname{Per}_{n}(0)$$ is irreducible over $${\mathbb{C}}$$. To do this, we exhibit a $${\mathbb{Q}}$$-rational smooth point on a projective completion of $$\operatorname{Per}_{n}(0)$$, using the admissible covers completion of a Hurwitz space. In contrast, the Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large $$n$$, $$\operatorname{Per}_{n}(0)$$ itself has no $${\mathbb{Q}}$$-rational points.more » « less
-
Abstract A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings.more » « less
-
Abstract We compare the algebras of the quantum automorphism group of finite-dimensional C$$^\ast $$-algebra $$B$$, which includes the quantum permutation group $$S_N^+$$, where $$N = \dim B$$. We show that matrix amplification and crossed products by trace-preserving actions by a finite Abelian group $$\Gamma $$ lead to isomorphic $$\ast $$-algebras. This allows us to transfer various properties such as inner unitarity, Connes embeddability, and strong $$1$$-boundedness between the various algebras associated with these quantum groups.more » « less
-
Abstract In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor map is cut out by the orbit of finitely many equations and inequalities under the action of $$(\textrm{SL}_{2}(\mathbb{R}))^{n} \rtimes S_{n}$$. We also study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we give examples to show for any field $$\mathbb{F}$$, there is no finite set of equations whose orbit under $$(\textrm{SL}_{2}(\mathbb{F}))^{n} \rtimes S_{n}$$ cuts out the image of $$n\times n$$ matrices over $${\mathbb{F}}$$ under the principal minor map for every $$n$$.more » « less
An official website of the United States government
