skip to main content

Search for: All records

Creators/Authors contains: "Ritter, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is growing evidence on the importance of psychological safety, or how comfortable participants feel in sharing their opinions and ideas in a team, in engineering team performance. However, how to support it in engineering student teams has yet to be explored. The goal of this study was to investigate whether a video intervention with assigned roles could foster psychological safety in student engineering teams. In addition, we sought to explore the impact of the frequency of the videos and the utility of the roles on the self-efficacy of students and the perceived psychological safety of the team. Specifically, this study introduces video interventions and the four lenses of psychological safety (Turn-Taking Equalizer, Point of View Shifter, Affirmation Advocate, and Creativity Promoter), and seeks to determine their effectiveness at increasing psychological safety self-efficacy and individual levels of psychological safety. A pilot study was completed with 54 participants (36 males, 17 females, 1 non-binary/third gender) enrolled in a cornerstone engineering design course. Over 10 weeks, data was collected at 5 time points. The results present four key findings. Most notably, 1) a video educating all students about psychological safety in general was effective in improving psychological safety self-efficacy and students retainedmore »this information to the end of the project;2) intervention groups taught to use the four lenses did not have a statistically significant higher level of psychological safety than non- intervention groups; and 3) intervention groups perceived the use of the lenses to increase psychological safety. These results provide a baseline understanding that is needed to support psychological safety including: when to intervene, how to intervene, and how frequently to intervene.« less
    Free, publicly-accessible full text available August 1, 2023
  2. Research on psychological safety has been growing in recent years due to its role in promoting creativity and innovation, among other items. This is because teams with high levels of psychological safety feel safe to express ideas and opinions. While we are becoming more aware of the importance of psychological safety in teaming, there is limited evidence in how to facilitate or build it within teams, particularly in an educational context. This paper was developed to respond to this research void by identifying the impact of teaming interventions aimed at improving psychological safety in engineering design student teams. Specifically, we studied two cohorts of students in a cornerstone design class (N = 414 students), one who received a series of video interventions and introduced role playing (intervention) and one who did not (control). These role assignments — referred to as the Lenses of Psychologically Safety - were created to promote key leadership attributes that have been shown to be crucial in facilitating psychologically safe teams. To compare the utility of the intervention, Psychological Safety was gathered at 5 key time points of a multi-week design project. The results identified three key findings. First, the interventions were successful in increasing psychologicalmore »safety in engineering teams. In addition, the results indicated the utility of the Lenses of Psychological Safety throughout the design process. Finally, the results identified that groups who used these lenses had higher perceptions of Psychological Safety in their teams. Overall, these results indicated that psychological safety can be improved in engineering education through the intervention methods described within.« less
    Free, publicly-accessible full text available August 1, 2023
  3. Understanding how students with varying capabilities think about problem solving can greatly help in improving personalized education which can have significantly better learning outcomes. Here, we present the details of a system we call NeTra that we developed for discovering strategies that students follow in the context of Math learning. Specifically, we developed this system from large-scale data from MATHia that contains millions of student-tutor interactions. The goal of this system is to provide a visual interface for educators to understand the likely strategy the student will follow for problems that students are yet to attempt. This predictive interface can help educators/tutors to develop interventions that are personalized for students. Underlying the system is a powerful AI model based on Neuro-Symbolic learning that has shown promising results in predicting both strategies and the mastery over concepts used in the strategy.
    Free, publicly-accessible full text available July 1, 2023
  4. Free, publicly-accessible full text available July 1, 2023
  5. Using archived student data for middle and high school students’ mathematics-focused intelligent tutoring system (ITS) learning collected across a school year, this study explores situational, achievement-goal latent profile membership and the stability of these profiles with respect to student demographics and dispositional achievement goal scores. Over 65% of students changed situational profile membership at some time during the school year. Start-of-year dispositional motivation scores were not related to whether students remained in the same profile across all unit-level measurements. Grade level was predictive of profile stability. Findings from the present study should shed light on how in-the-moment student motivation fluctuates while students are engaged in ITS math learning. Present findings have potential to inform motivation interventions designed for ITS math learning.
    Free, publicly-accessible full text available July 1, 2023
  6. This paper provides an update of the Learner Data Institute (LDI; which is now in its third year since conceptualization. Funded as a conceptualization project, the LDI’s first two years had two major goals: (1) develop, implement, evaluate, and refine a framework for data-intensive science and engineering and (2) use the framework to start developing prototype solutions, based on data, data science, and science convergence, to a number of core challenges in learning science and engineering. One major focus in the third, current year is synthesizing efforts from the first two years to identify new opportunities for future research by various mutual interest groups within LDI, which have focused on developing a particular prototype solution to one or more related core challenges in learning science and engineering. In addition to highlighting emerging data-intensive solutions and innovations from the LDI’s first two years, including places where LDI researchers have received additional funding for future research, we highlight here various core challenges our team has identified as being at a “tipping point.” Tipping point challenges are those for which timely investment in data-intensive approaches has the maximum potential for a transformative effect.
    Free, publicly-accessible full text available July 1, 2023
  7. This paper investigates team psychological safety (N=34 teams) in a synchronous online engineering design class spanning 4 weeks. While work in this field has suggested that psychological safety in virtual teams can facilitate knowledge-sharing, trust among teams, and overall performance, there have been limited investigations of the longitudinal trajectory of psychological safety, when the construct stabilizes in a virtual environment, and what factors impact the building of psychological safety in virtual teams. The results of this study identified that the construct of psychological safety took more time to become a reliable construct in virtual design teams, but once it stabilized, it did not change. Additionally, qualitative findings point to issues with communication and conflict across various stages of the design process in the development of psychological safety. Finally, we identify potential interventions to enhance team mental model development in the early phases of virtual teaming to support team psychological safety.
  8. Psychological safety has been shown to be a consistent, generalizable, and multilevel predictor of outcomes in performance and learning across fields. While work in this field has suggested that psychological safety can impact the creative process, particularly in the generation of ideas and in the discussions surrounding idea development, there has been limited investigations of psychological safety in the engineering domain. Without this knowledge we do not know when to fostering psychological safety in a team environment is most important. This study provides the first attempt at answering this question through an empirical study with 53 engineering design student teams over the course of a 4- and 8-week design project. Specifically, we sought to identify the role of psychological safety on the number and quality (judged by goodness) of ideas generated. In addition, we explored the role of psychological safety on ownership bias and goodness in the concept screening process. The results of the study identified that while psychological safety was not related to the number of ideas a team developed, it was positively related to the quality (goodness) of the ideas developed. In addition, while no relationship was found between psychological safety and ownership bias during concept screening, themore »results showed that teams with high psychological safety selected a higher percentage of their team members ideas.« less
  9. Although teamwork is being integrated throughout engineering education because of the perceived benefits of teams, the construct of psychological safety has been largely ignored in engineering research. This omission is unfortunate, because psychological safety reflects collective perceptions about how comfortable team members feel in sharing their perspectives and it has been found to positively impact team performance in samples outside of engineering. Engineering team research has also been crippled by “snap-shot” methodologies and the resulting lack of investigation into the dynamic changes that happen within a team over course projects. This is problematic, because we do not know when, how, or what type of interventions are needed to effectively improve “t-shaped” engineering skills like teamwork, communication, and engaging successfully in a diverse team. In light of these issues, the goal of the current study was to understand how psychological safety might be measured practically and reliably in engineering student teams over time. In addition, we sought to identify the trajectory of psychological safety for engineering design student teams and identify the potential factors that impact the building and waning of psychological safety in these teams. This was accomplished through a 4-week study with 12 engineering design teams where data wasmore »captured at six time points. The results of this study present some of the first evidence on the reliability of psychological safety in engineering student populations. The results also help begin to answer some difficult fundamental questions on supporting team performance in engineering education.« less