Spatially resolved in situ transmission electron microscopy (TEM), equipped with direct electron detection systems, is a suitable technique to record information about the atom-scale dynamics with millisecond temporal resolution from materials. However, characterizing dynamics or fluxional behavior requires processing short time exposure images which usually have severely degraded signal-to-noise ratios. The poor signal-to-noise associated with high temporal resolution makes it challenging to determine the position and intensity of atomic columns in materials undergoing structural dynamics. To address this challenge, we propose a noise-robust, processing approach based on blob detection, which has been previously established for identifying objects in images in the community of computer vision. In particular, a blob detection algorithm has been tailored to deal with noisy TEM image series from nanoparticle systems. In the presence of high noise content, our blob detection approach is demonstrated to outperform the results of other algorithms, enabling the determination of atomic column position and its intensity with a higher degree of precision.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
40
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Chang, Chen-Yu (2)
-
Lai, Cheng-Yu (2)
-
Liu, Mimi (2)
-
Manzorro, Ramon (2)
-
Prado-Rivera, Roberto (2)
-
Radu, Daniela R. (2)
-
Rivera, Roberto (2)
-
Xu, Yuchen (2)
-
Crozier, Peter (1)
-
Crozier, Peter A. (1)
-
Matteson, David (1)
-
Matteson, David S. (1)
-
Vincent, Joshua (1)
-
Vincent, Joshua L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Manzorro, Ramon ; Xu, Yuchen ; Vincent, Joshua ; Rivera, Roberto ; Matteson, David ; Crozier, Peter ( , Microscopy and Microanalysis)
-
Prado-Rivera, Roberto ; Chang, Chen-Yu ; Liu, Mimi ; Lai, Cheng-Yu ; Radu, Daniela R. ( , Nanomaterials)The class of ternary copper chalcogenides Cu3MX4 (M = V, Nb, Ta; X = S, Se, Te), also known as the sulvanite family, has attracted attention in the past decade as featuring promising materials for optoelectronic devices, including solar photovoltaics. Experimental and theoretical studies of these semiconductors have provided much insight into their properties, both in bulk and at the nanoscale. The recent realization of sulvanites at the nanoscale opens new avenues for the compounds toward printable electronics. This review is aimed at the consideration of synthesis methods, relevant properties and the recent developments of the most important sulvanites.
-
Chang, Chen-Yu ; Prado-Rivera, Roberto ; Liu, Mimi ; Lai, Cheng-Yu ; Radu, Daniela R. ( , ACS Nanoscience Au)