skip to main content

Search for: All records

Creators/Authors contains: "Rix, Hans-Walter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a homogeneously selected sample of 15 779 candidate binary systems with main sequence primary stars and orbital periods shorter than 5 d. The targets were selected from TESS full-frame image light curves on the basis of their tidally induced ellipsoidal modulation. Spectroscopic follow-up suggests a sample purity of 83 ± 13 per cent. Injection-recovery tests allow us to estimate our overall completeness as 28 ± 3 per cent with Porb < 3 d and to quantify our selection effects. 39 ± 4 per cent of our sample are contact binary systems, and we disentangle the period distributions of the contact and detached binaries. We derive the orbital period distribution of the main-sequence binary population at short orbital periods, finding a distribution continuous with the lognormal distribution previously found for solar-type stars at longer periods, but with a significant steepening at Porb ≲ 3 d, and a pile-up of contact binaries at Porb  ≈ 0.4 d. Companions in the period range of 1–5 d are an order of magnitude more frequent around stars hotter than $\approx 6250\, \rm K$ (the Kraft break) when compared to cooler stars, suggesting that magnetic braking shortens the lifetime of cooler binary systems. However, the period distribution in the range 1–10 d is independent of temperature. We detect resolved tertiary companions to 9.0 ± 0.2 per cent ofmore »our binaries with a median separation of 3200 au. The frequency of tertiary companions rises to 29 ± 5 per cent among the systems with the shortest ellipsoidal periods. This large binary sample with quantified selection effects will be a powerful resource for future studies of detached and contact binary systems with Porb<5 d.

    « less
  2. Abstract

    The orbital-period (Porb) gap in the population of cataclysmic variables (CVs) informs the theoretical narrative of CV evolution, yet a complete understanding of the driving angular momentum loss mechanisms above and below this gap remains elusive. Here we identify, for standard CVs, a new, apparently monotonic relationship between quiescent color (GBPGRP), absolute magnitude (MG), andPorb(between 70 minutes and 8 hr) revealed in Gaia DR2 and EDR3. We show thatPorbincreases in the color–absolute-magnitude diagram roughly orthogonally to the white dwarf and main sequences. We find the orbital-period–color–absolute-magnitude relationship to be stable across different CV subtypes: dwarf novae, intermediate polars, polars, and novalike systems. We place our findings in context with the known semiempirical donor sequence for CVs and find a dependence between color andMGfor a givenPorbspecifically for dwarf novae and intermediate polars above the period gap. These relations have the potential to inform a more complete picture of CV evolution.

  3. ABSTRACT

    We analyse two binary systems containing giant stars, V723 Mon (‘the Unicorn’) and 2M04123153+6738486 (‘the Giraffe’). Both giants orbit more massive but less luminous companions, previously proposed to be mass-gap black holes. Spectral disentangling reveals luminous companions with star-like spectra in both systems. Joint modelling of the spectra, light curves, and spectral energy distributions robustly constrains the masses, temperatures, and radii of both components: the primaries are luminous, cool giants ($T_{\rm eff,\, giant} = 3800$ and $4000\, \rm K$, $R_{\rm giant}= 22.5$ and $25\, {\rm R}_{\odot }$) with exceptionally low masses ($M_{\rm giant} \approx 0.4\, {\rm M}_{\odot }$) that likely fill their Roche lobes. The secondaries are only slightly warmer subgiants ($T_{\rm eff,\, 2} = 5800$ and $5150\, \rm K$, $R_2= 8.3$ and $9\, {\rm R}_{\odot }$) and thus are consistent with observed UV limits that would rule out main-sequence stars with similar masses ($M_2 \approx 2.8$ and ${\approx}1.8\, {\rm M}_{\odot }$). In the Unicorn, rapid rotation blurs the spectral lines of the subgiant, making it challenging to detect even at wavelengths where it dominates the total light. Both giants have surface abundances indicative of CNO processing and subsequent envelope stripping. The properties of both systems can be reproducedmore »by binary evolution models in which a $1{-}2\, {\rm M}_{\odot }$ primary is stripped by a companion as it ascends the giant branch. The fact that the companions are also evolved implies either that the initial mass ratio was very near unity, or that the companions are temporarily inflated due to rapid accretion. The Unicorn and Giraffe offer a window into into a rarely observed phase of binary evolution preceding the formation of wide-orbit helium white dwarfs, and eventually, compact binaries containing two helium white dwarfs.

    « less
  4. ABSTRACT

    We report discovery of a bright, nearby ($G = 13.8;\, \, d = 480\, \rm pc$) Sun-like star orbiting a dark object. We identified the system as a black hole candidate via its astrometric orbital solution from the Gaia mission. Radial velocities validated and refined the Gaia solution, and spectroscopy ruled out significant light contributions from another star. Joint modelling of radial velocities and astrometry constrains the companion mass of $M_2 = 9.62\pm 0.18\, \mathrm{M}_{\odot }$. The spectroscopic orbit alone sets a minimum companion mass of $M_2\gt 5\, \mathrm{M}_{\odot }$; if the companion were a $5\, \mathrm{M}_{\odot }$ star, it would be 500 times more luminous than the entire system. These constraints are insensitive to the mass of the luminous star, which appears as a slowly rotating G dwarf ($T_{\rm eff}=5850\, \rm K$, log g = 4.5, $M=0.93\, \mathrm{M}_{\odot }$), with near-solar metallicity ($\rm [Fe/H] = -0.2$) and an unremarkable abundance pattern. We find no plausible astrophysical scenario that can explain the orbit and does not involve a black hole. The orbital period, Porb = 185.6 d, is longer than that of any known stellar-mass black hole binary. The system’s modest eccentricity (e = 0.45), high metallicity, and thin-disc Galactic orbit suggestmore »that it was born in the Milky Way disc with at most a weak natal kick. How the system formed is uncertain. Common envelope evolution can only produce the system’s wide orbit under extreme and likely unphysical assumptions. Formation models involving triples or dynamical assembly in an open cluster may be more promising. This is the nearest known black hole by a factor of 3, and its discovery suggests the existence of a sizable population of dormant black holes in binaries. Future Gaia releases will likely facilitate the discovery of dozens more.

    « less
  5. Abstract We present 0.″035 resolution (∼200 pc) imaging of the 158 μ m [C ii ] line and the underlying dust continuum of the z = 6.9 quasar J234833.34–305410.0. The 18 hour Atacama Large Millimeter/submillimeter Array observations reveal extremely compact emission (diameter ∼1 kpc) that is consistent with a simple, almost face-on, rotation–supported disk with a significant velocity dispersion of ∼160 km s −1 . The gas mass in just the central 200 pc is ∼4 × 10 9 M ⊙ , about a factor of two higher than that of the central supermassive black hole. Consequently we do not resolve the black hole’s sphere of influence, and find no kinematic signature of the central supermassive black hole. Kinematic modeling of the [C ii ] line shows that the dynamical mass at large radii is consistent with the gas mass, leaving little room for a significant mass contribution by stars and/or dark matter. The Toomre–Q parameter is less than unity throughout the disk, and thus is conducive to star formation, consistent with the high-infrared luminosity of the system. The dust in the central region is optically thick, at a temperature >132 K. Using standard scaling relations of dust heating bymore »star formation, this implies an unprecedented high star formation rate density of >10 4 M ⊙ yr −1 kpc −2 . Such a high number can still be explained with the Eddington limit for star formation under certain assumptions, but could also imply that the central supermassive black hole contributes to the heating of the dust in the central 200 pc.« less
  6. ABSTRACT We construct from Gaia eDR3 an extensive catalogue of spatially resolved binary stars within ≈1 kpc of the Sun, with projected separations ranging from a few au to 1 pc. We estimate the probability that each pair is a chance alignment empirically, using the Gaia catalogue itself to calculate the rate of chance alignments as a function of observables. The catalogue contains 1.3 (1.1) million binaries with >90 per cent (>99 per cent) probability of being bound, including 16 000 white dwarf – main-sequence (WD + MS) binaries and 1400 WD + WD binaries. We make the full catalogue publicly available, as well as the queries and code to produce it. We then use this sample to calibrate the published Gaia DR3 parallax uncertainties, making use of the binary components’ near-identical parallaxes. We show that these uncertainties are generally reliable for faint stars (G ≳ 18), but are underestimated significantly for brighter stars. The underestimates are generally $\leq30{{\ \rm per\ cent}}$ for isolated sources with well-behaved astrometry, but are larger (up to ∼80 per cent) for apparently well-behaved sources with a companion within ≲4 arcsec, and much larger for sources with poor astrometric fits. We provide an empirical fitting function to inflate published σϖ values for isolated sources. The publicmore »catalogue offers wide ranging follow-up opportunities: from calibrating spectroscopic surveys, to precisely constraining ages of field stars, to the masses and the initial–final mass relation of WDs, to dynamically probing the Galactic tidal field.« less