skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roady, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks are popular for visual perception tasks such as image classification and object detection. Once trained and deployed in a real-time environment, these models struggle to identify novel inputs not initially represented in the training distribution. Further, they cannot be easily updated on new information or they will catastrophically forget previously learned knowledge. While there has been much interest in developing models capable of overcoming forgetting, most research has focused on incrementally learning from common image classification datasets broken up into large batches. Online streaming learning is a more realistic paradigm where a model must learn one sample at a time from temporally correlated data streams. Although there are a few datasets designed specifically for this protocol, most have limitations such as few classes or poor image quality. In this work, we introduce Stream-51, a new dataset for streaming classification consisting of temporally correlated images from 51 distinct object categories and additional evaluation classes outside of the training distribution to test novelty recognition. We establish unique evaluation protocols, experimental metrics, and baselines for our dataset in the streaming paradigm. 
    more » « less
  2. null (Ed.)
    Supervised classification methods often assume that evaluation data is drawn from the same distribution as training data and that all classes are present for training. However, real-world classifiers must handle inputs that are far from the training distribution including samples from unknown classes. Open set robustness refers to the ability to properly label samples from previously unseen categories as novel and avoid high-confidence, incorrect predictions. Existing approaches have focused on either novel inference methods, unique training architectures, or supplementing the training data with additional background samples. Here, we propose a simple regularization technique easily applied to existing convolutional neural network architectures that improves open set robustness without a background dataset. Our method achieves state-of-the-art results on open set classification baselines and easily scales to large-scale open set classification problems. 
    more » « less