skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Robertson, Dillard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. In many automated motion planning systems, vehicles are tasked with tracking a reference path or trajectory that is safe by design. However, due to various uncertainties, real vehicles may deviate from such references, potentially leading to collisions. This paper presents rigorous reachable set bounding methods for rapidly enclosing the set of possible deviations under uncertainty, which is critical information for online safety verification. The proposed approach applies recent advances in the theory of differential inequalities that exploit redundant model equations to achieve sharp bounds using only simple interval calculations. These methods have been shown to produce very sharp bounds at low cost for nonlinear systems in other application domains, but they rely on problem-specific insights to identify appropriate redundant equations, which makes them difficult to generalize and automate. Here, we demonstrate the application of these methods to tracking problems for the first time using three representative case studies. We find that defining redundant equations in terms of Lyapunov-like functions is particularly effective. The results show that this technique can produce effective bounds with computational times that are orders of magnitude less than the planned time horizon, making this a promising approach for online safety verification. This performance, however, comes at the cost of low generalizability, specifically due to the need for problem-specific insights and advantageous problem structure, such as the existence of appropriate Lyapunov-like functions. 
    more » « less