Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A critical step in Raman spectroscopy is baseline correction. This procedure eliminates the background signals generated by residual Rayleigh scattering or fluorescence. Baseline correction procedures relying on asymmetric loss functions have been employed recently. They operate with a reduced penalty on positive spectral deviations that essentially push down the baseline estimates from invading Raman peak areas. However, their coupling with polynomial fitting may not be suitable over the whole spectral domain and can yield inconsistent baselines. Their requirement of the specification of a threshold and the non-convexity of the corresponding objective function further complicates the computation. Learning from their pros and cons, we have developed a novel baseline correction procedure called the iterative smoothing-splines with root error adjustment (ISREA) that has three distinct advantages. First, ISREA uses smoothing splines to estimate the baseline that are more flexible than polynomials and capable of capturing complicated trends over the whole spectral domain. Second, ISREA mimics the asymmetric square root loss and removes the need of a threshold. Finally, ISREA avoids the direct optimization of a non-convex loss function by iteratively updating prediction errors and refitting baselines. Through our extensive numerical experiments on a wide variety of spectra including simulated spectra, mineral spectra, and dialysate spectra, we show that ISREA is simple, fast, and can yield consistent and accurate baselines that preserve all the meaningful Raman peaks.more » « less
-
The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys ( n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL −1 , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive ‘microfluidic biopsy’ technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.more » « less
An official website of the United States government

Full Text Available