skip to main content

Search for: All records

Creators/Authors contains: "Rogers, Brendan M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 8, 2024
  2. Abstract. Tundra environments are experiencing elevated levels of wildfire, and thefrequency is expected to keep increasing due to rapid climate change in theArctic. Tundra wildfires can release globally significant amounts ofgreenhouse gasses that influence the Earth's radiative balance. Here wedevelop a novel method for estimating carbon loss and the resultingradiative forcings of gaseous and aerosol emissions from the 2015 tundrawildfires in the Yukon–Kuskokwim Delta (YKD), Alaska. We paired burn depthmeasurements using two vegetative reference points that survived the fireevent – Sphagnum fuscum and Dicranum spp. – with measurements of local organic matter and soil carbonproperties to estimate total ecosystem organic matter and carbon loss. Weused remotely sensed data on fire severity from Landsat 8 to scale ourmeasured losses to the entire fire-affected area, with an estimated totalloss of 2.04 Tg of organic matter and 0.91 Tg of carbon and an average lossof 3.76 kg m−2 of organic matter and 1.68 kg m−2 of carbon in the2015 YKD wildfires. To demonstrate the impact of these fires on the Earth'sradiation budget, we developed a simple but comprehensive framework toestimate the radiative forcing from Arctic wildfires. We synthesizedexisting research on the lifetime and radiative forcings of gaseous andaerosol emissions of CO2, N2O, CH4, O3 and itsprecursors, and fire aerosols.more »The model shows a net positive cumulativemean radiative forcing of 3.67 W m−2 using representative concentration pathway (RCP) 4.5 and 3.37 W m−2using RCP 8.5 at 80 years post-fire, which was dominated by CO2emissions. Our results highlight the climate impact of tundra wildfires,which positively reinforce climate warming and increased fire frequencythrough the radiative forcings of their gaseous emissions.« less
    Free, publicly-accessible full text available January 1, 2024
  3. Abstract. Fire is the dominant disturbance agent in Alaskan and Canadianboreal ecosystems and releases large amounts of carbon into the atmosphere.Burned area and carbon emissions have been increasing with climate change,which have the potential to alter the carbon balance and shift the regionfrom a historic sink to a source. It is therefore critically important totrack the spatiotemporal changes in burned area and fire carbon emissionsover time. Here we developed a new burned-area detection algorithm between2001–2019 across Alaska and Canada at 500 m (meters) resolution thatutilizes finer-scale 30 m Landsat imagery to account for land coverunsuitable for burning. This method strictly balances omission andcommission errors at 500 m to derive accurate landscape- and regional-scaleburned-area estimates. Using this new burned-area product, we developedstatistical models to predict burn depth and carbon combustion for the sameperiod within the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) coreand extended domain. Statistical models were constrained using a database offield observations across the domain and were related to a variety ofresponse variables including remotely sensed indicators of fire severity,fire weather indices, local climate, soils, and topographic indicators. Theburn depth and aboveground combustion models performed best, with poorerperformance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mhaacrossmore »all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1standard deviation) of carbon (C) per year, with a mean combustionrate of 3.13 ± 1.17 kg C m−2. Mean combustion and burn depthdisplayed a general gradient of higher severity in the northwestern portionof the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greatermean combustion. Our estimates are generally consistent with previousefforts to quantify burned area, fire carbon emissions, and their drivers inregions within boreal North America; however, we generally estimate higherburned area and carbon emissions due to our use of Landsat imagery, greateravailability of field observations, and improvements in modeling. The burnedarea and combustion datasets described here (the ABoVE Fire EmissionsDatabase, or ABoVE-FED) can be used for local- to continental-scaleapplications of boreal fire science.« less
    Free, publicly-accessible full text available January 1, 2024
  4. Abstract Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climatemore »will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling.« less
  5. Hui, Dafeng (Ed.)
    Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m -2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscapemore »positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed.« less
  6. Abstract

    Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study.

  7. Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughoutmore »boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.« less