skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosenberg, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. This paper examines the initial beliefs held by elementary educators (n=11) and their students about teaching and learning quantum concepts at the elementary level. All teachers were participants in a grant-funded project focused on developing teachers’ quantum content knowledge and creating curricular resources to use in elementary classrooms. Although elementary teachers had limited knowledge of quantum at the beginning of the project, they expressed excitement and a belief that learning quantum would create future possibilities for their students. 
    more » « less
  3. Quantum science and computing represent a vital intersection between science and technology, gaining increasing importance in modern society. There is a pressing need to incorporate these concepts into the K-12 curriculum, equipping new generations with the tools to navigate and thrive in an evolving technological landscape. This study explores the professional learning of K-12 teachers (n = 49) related to quantum concepts and pedagogy. We used open-ended surveys, field notes, workshop artifacts, and interviews to examine teachers’ perceptions of quantum and how they made connections between quantum and their curriculum. Our data reveal that most teachers were excited and interested in teaching quantum but were aware of potential barriers and concerns that might get in the way of teaching quantum. We found that teachers readily identified connections to math and science in their curriculum, but only a few made connections to computing. Enthusiasm for teaching quantum concepts was found in both elementary and secondary educators, suggesting a widespread recognition of its importance in preparing students for a future where quantum technology is a fundamental aspect of their lives and careers. 
    more » « less
  4. The percentage of women receiving bachelor’s degrees in physics (25%) in the U.S. lags well behind that of men, and women leave the major at higher rates. Achieving equity in physics will mean that women stay in physics at the same rates as men, but this will require changes in the culture and support structures. A strong sense of belonging can lead to higher retention rates so interventions meant to increase dimensions of physics identity (interest, recognition, performance, and competence) may increase persistence overall and increase women’s retention differentially. We describe our model in which mentorship, an understanding of career options (career conceptualization), and leadership are inputs into the development of these dimensions of physics identity. This paper includes preliminary results from a qualitative study that aims to better understand how career conceptualization, leadership, and mentorship contribute to the development of physics identity and belonging. We report results from a survey of 15 undergraduate physics students which was followed up by interviews with 5 of those students. The students were from 2 institutions: a small private liberal arts college in the midwest region of the U.S. and a large public university in the southeast region of the U.S. classified as a Hispanic-serving institution (HSI). With respect to mentorship, consistent with the existing literature, we found that it could provide critical support for students’ engagement in the physics community. Leadership experiences have not previously been positioned as an important input into identity, yet we found that they helped women in physics feel more confident, contributing to their recognition of themselves as physics people. While the data on how career conceptualization contributed to the building of identity is limited, there are some connections to recognition and competence, and it will be an interesting avenue of future exploration. Published by the American Physical Society2024 
    more » « less
  5. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  6. Abstract On high‐latitude continental margins sediment is supplied from land to the deep sea through a variety of processes, including iceberg and sea‐ice rafting, and bottom current transport. The accurate reconstruction of sediment fluxes from these sources through time is important in palaeoclimate reconstructions. The goal of this study was to assess a shift in the intensity of glacial processes, iceberg and sea‐ice rafting during the Pliocene through an investigation of coarse sediment deposited at the AND‐2A site in the Ross Sea and at International Ocean Discovery Program Site U1359 on the Antarctic continental rise. Terrigenous particle‐size distributions and suites of quartz grain microtextures in the sand fraction of the deep‐sea sediments were compared to those from Antarctic glaciomarine diamictites as a baseline for proximal glacial sediment in its source area. Using images acquired through Scanning Electron Microscopy, and following a quantitative approach, fewer immature and potentially glacially transported grains were found in Pliocene deep‐sea sand fractions than in ice‐contact sediments. Specifically, in the lower Pliocene interval silt and fine sand percentages are elevated, and microtextures in at least half of the sand fraction are inconsistent with a primary glacial origin. Larger numbers of chemically altered and abraded grains in the deep‐sea sand fraction, along with microtextures that are diagnostic of periglacial environments, suggest a role for eolian sediment transport. These results highlight the anomalous nature of high‐latitude sediment fluxes during prolonged periods of ice retreat. Furthermore, the identification of a significant offshore sediment flux during Antarctic deglaciation has implications for estimated nutrient supply to the Southern Ocean and the potential for high‐latitude climate feedbacks under warmer climate states. 
    more » « less
  7. The neutral hydrogen (HI) in galaxies provides the gas reservoir out of which stars are formed. The ability to determine the HI masses for statistically significant samples of galaxies can provide information about the connection between this gas reservoir and the star formation that drives galaxy evolution. However, there are relatively few galaxies for which HI masses are known because these measurements are significantly more difficult to make than optical observations. Artificial neural networks are a type of nonlinear technique that have been used estimate the gas masses from their optical properties (Teimoorinia et al. 2017). We present HI observations of 51 galaxies with gas and stellar properties that are rare in the Arecibo Legacy Fast ALFA Survey (ALFALFA, Haynes et al. 2018) which was used to train the Artificial Neural Network developed by Teimoorinia et al. (ANN, 2017). These sources provide a test of the Artificial Neural Network predictions of HI mass and include some rare and interesting systems including galaxies that are extremely massive in both stellar mass (log M_∗> 11.0) and HI mass (log M_HI> 10.2) with large HI line widths (w_50> 500 km/s). We find that this Artificial Neural Network systematically overestimates the gas fraction of the galaxies in our selected sample, suggesting that care must be taken when using these techniques to predict gas masses for galaxies from a broad range of optical properties. 
    more » « less