skip to main content


Search for: All records

Creators/Authors contains: "Rosenthal, Malcolm"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Objectives Arachnids have fascinating and unique biology, particularly for questions on sex differences and behavior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a significant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description To examine sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders ( Schizocosa ocreata ). The raw data consist of sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and differential expression analyses. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from publicly-available databases. 
    more » « less
  2. Abstract

    Animals communicate using a diversity of signals produced by a wide array of physical structures. Determining how a signal is produced provides key insights into signal evolution. Here, we examine a complex vibratory mating display produced by maleSchizocosa floridanawolf spiders. This display contains three discrete substrate‐borne acoustic components (known as “thumps”, “taps”, and “chirps”), each of which is anecdotally associated with the movement of a different body part (the pedipalps, legs, and abdomen respectively). In order to determine the method of production, we employ a combination of high‐speed video/audio recordings and SEM imaging of possible sound‐producing structures. Previous work has suggested that the “chirp” component is tonal, a signal trait that would be potentially unique in the genus. We measured signal tonality for all courtship components, as well as for courtship components from sixteen otherSchizocosawolf spiders. Our results suggest thatS. floridanaproduces courtship song using a combination of shared (palpal stridulation and foreleg percussion) and novel (abdominal movement) sound production mechanisms. Of particular interest, the “chirp”, which is produced using a novel abdominal production mechanism, is the only known tonal signal with acoustic properties that are unique within the genus. We argue that the potential evolution of a novel sound production mechanism has opened up a new axis of signaling trait space in this species, with important implications for how this signal is likely to function and evolve.

     
    more » « less
  3. Abstract

    Animal signals experience selection for detectability, which is determined in large part by the signal transmission properties of the habitat. Understanding the ecological context in which communication takes place is therefore critical to understanding selection on the form of communication signals. In order to determine the influence of environmental heterogeneity on signal transmission, we focus on a wolf spider species native to central Florida, Schizocosa floridana, in which males court females using a substrate-borne vibratory song. We test the hypothesis that S. floridana is a substrate specialist by 1) assessing substrate use by females and males in the field, 2) quantifying substrate-specific vibratory signal transmission in the laboratory, and 3) determining substrate-specific mating success in the laboratory. We predict a priori that 1) S. floridana restricts its signaling to oak litter, 2) oak litter best transmits their vibratory signal, and 3) S. floridana mates most readily on oak litter. We find that S. floridana is almost exclusively found on oak litter, which was found to attenuate vibratory courtship signals the least. Spiders mated with equal frequency on oak and pine, but did not mate at all on sand. Additionally, we describe how S. floridana song contains a novel component, chirps, which attenuate more strongly than its other display components on pine and sand, but not on oak, suggesting that the ways in which the environment relaxes restrictions on signal form may be as important as the ways in which it imposes them.

     
    more » « less
  4. Abstract

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator–prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator–prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed.

     
    more » « less