- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004100000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Ross, Vivian (5)
-
Höllerer, Tobias (3)
-
Awasthi, Satyam (2)
-
Beyeler, Michael (2)
-
Hollerer, Tobias (2)
-
Huynh, Brandon (2)
-
Wysopal, Abby (2)
-
Acharya, Pranav (1)
-
Ha, Maya (1)
-
Lohn, Daniel (1)
-
Orlosky, Jason (1)
-
Passananti, Joyce (1)
-
Rich, Alexander (1)
-
Sayyad, Ehsan (1)
-
Yu, Kangyou (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Awasthi, Satyam; Ross, Vivian; Beyeler, Michael; Höllerer, Tobias (, IEEE International Symposium on Mixed and Augmented Reality ISMARAdjunct)
-
Wysopal, Abby; Ross, Vivian; Passananti, Joyce; Yu, Kangyou; Huynh, Brandon; Höllerer, Tobias (, 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR))
-
Huynh, Brandon; Wysopal, Abby; Ross, Vivian; Orlosky, Jason; Hollerer, Tobias (, Proceedings International Symposium on Mixed and Augmented Reality ISMAR)
-
Acharya, Pranav; Lohn, Daniel; Ross, Vivian; Ha, Maya; Rich, Alexander; Sayyad, Ehsan; Hollerer, Tobias (, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW))Synthetic data is highly useful for training machine learning systems performing image-based 3D reconstruction, as synthetic data has applications in both extending existing generalizable datasets and being tailored to train neural networks for specific learning tasks of interest. In this paper, we introduce and utilize a synthetic data generation suite capable of generating data given existing 3D scene models as input. Specifically, we use our tool to generate image sequences for use with Multi-View Stereo (MVS), moving a camera through the virtual space according to user-chosen camera parameters. We evaluate how the given camera parameters and type of 3D environment affect how applicable the generated image sequences are to the MVS task using five pre-trained neural networks on image sequences generated from three different 3D scene datasets. We obtain generated predictions for each combination of parameter value and input image sequence, using standard error metrics to analyze the differences in depth predictions on image sequences across 3D datasets, parameters, and networks. Among other results, we find that camera height and vertical camera viewing angle are the parameters that cause the most variation in depth prediction errors on these image sequences.more » « less