Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus lowering the use of moment and tilt sensors that are currently being used for obtaining foundation stiffness. First, a convolutional neural network model is applied to map acceleration and wind speed data within a moving window to corresponding moment and tilt values. Rotational stiffness of the foundation is then estimated by fitting a line in the moment-tilt plane. The results obtained indicate that such a mapping model can provide stiffness values that are within 7% of ground truth stiffness values on average. Second, the developed mapping model is re-trained by using synthetic acceleration and wind speed data that are generated by an autoencoder generative AI network. The results obtained indicate that although the exact amount of stiffness drop cannot be determined, the drops themselves can be detected. This mapping model can be used not only to lower the cost associated with obtaining foundation rotational stiffness but also to sound an alarm when a foundation starts deteriorating.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Freezing of wind turbines causes loss of wind-generated power. Forecasting or prediction of icing on wind turbine blades based on SCADA sensor data allows taking appropriate actions before icing occurs. This paper presents a newly developed deep learning network model named PCTG (Parallel CNN-TCN GRU) for the purpose of high-accuracy and long-term prediction of icing on wind turbine blades. This model combines three networks, the CNN, TCN, and GRU, in order to incorporate both the temporal aspect of SCADA time-series data as well as the dependencies of SCADA variables. The experimentations conducted by using this model and SCADA data from three wind turbines in a wind farm have generated average prediction accuracies of about 97% for prediction horizons of up to 2 days ahead. The developed model is shown to maintain at least 95% prediction accuracy for long prediction horizons of up to 22 days ahead. Furthermore, for another wind farm SCADA dataset, it is shown that the developed PCTG model achieves over 99% icing prediction accuracy 10 days ahead.more » « less
-
We propose a short-term wind forecasting framework for predicting real-time variations in atmospheric turbulence based on nacelle-mounted anemometer and ground-level air-pressure measurements. Our approach combines linear stochastic estimation and Kalman filtering algorithms to assimilate and process real-time field measurements with the predictions of a stochastic reduced-order model that is confined to a two-dimensional plane at the hub height of turbines. We bridge the vertical gap between the computational plane of the model at hub height and the measurement plane on the ground using a projection technique that allows us to infer the pressure in one plane from the other. Depending on the quality of this inference, we show that customized variants of the extended and ensemble Kalman filters can be tuned to balance estimation quality and computational speed 1–1.5 diameters ahead and behind leading turbines. In particular, we show how synchronizing the sign of estimates with that of velocity fluctuations recorded at the nacelle can significantly improve the ability to follow temporal variations upwind of the leading turbine. We also propose a convex optimization-based framework for selecting a subset of pressure sensors that achieve a desired level of accuracy relative to the optimal Kalman filter that uses all sensing capabilities.more » « lessFree, publicly-accessible full text available January 29, 2026
-
In cold climates, ice formation on wind turbines causes power reduction produced by a wind farm. This paper introduces a framework to predict icing at the farm level based on our recently developed Temporal Convolutional Network prediction model for a single turbine using SCADA data.First, a cross-validation study is carried out to evaluate the extent predictors trained on a single turbine of a wind farm can be used to predict icing on the other turbines of a wind farm. This fusion approach combines multiple turbines, thereby providing predictions at the wind farm level. This study shows that such a fusion approach improves prediction accuracy and decreases fluctuations across different prediction horizons when compared with single-turbine prediction. Two approaches are considered to conduct farm-level icing prediction: decision fusion and feature fusion. In decision fusion, icing prediction decisions from individual turbines are combined in a majority voting manner. In feature fusion, features of individual turbines are averaged first before conducting prediction. The results obtained indicate that both the decision fusion and feature fusion approaches generate farm-level icing prediction accuracies that are 7% higher with lower standard deviations or fluctuations across different prediction horizons when compared with predictions for a single turbine.more » « less
-
Wind tunnel experiments were performed to quantify the coupling mechanisms between incoming wind flows, power output fluctuations, and unsteady tower aerodynamic loads of a model wind turbine under periodically oscillating wind environments across various yaw misalignment angles. A high-resolution load cell and a data logger at high temporal resolution were applied to quantify the aerodynamic loads and power output, and time-resolved particle image velocimetry system was used to characterize incoming and wake flow statistics. Results showed that due to the inertia of the turbine rotor, the time series of power output exhibits a distinctive phase lag compared to the incoming periodically oscillating wind flow, whereas the phase lag between unsteady aerodynamic loads and incoming winds was negligible. Reduced-order models based on the coupling between turbine properties and incoming periodic flow characteristics were derived to predict the fluctuation intensity of turbine power output and the associated phase lag, which exhibited reasonable agreement with experiments. Flow statistics demonstrated that under periodically oscillating wind environments, the growth of yaw misalignment could effectively mitigate the overall flow fluctuation in the wake region and significantly enhance the stream-wise wake velocity cross correlation intensities downstream of the turbine hub location.more » « less
-
Summary Wake steering is very effective in optimizing the power production of an array of turbines aligned with the wind direction. However, the wind farm behaves as a porous obstacle for the incoming flow, inducing a secondary flow in the lateral direction and a reduction of the upstream wind speed. This is normally referred to as blockage effect. Little is known on how the blockage and the secondary flow influence the loads on the turbines when an intentional yaw misalignment is applied to steer the wake. In this work, we assess the variation of the loads on a virtual 4 by 4 array of turbines with intentional yaw misalignment under different levels of turbulence intensity. We estimate the upstream distance at which the incoming wind is influenced by the wind farm, and we determine the wind farm blockage effect on the loads. In presence of low turbulence intensity in the incoming flow, the application of yaw misalignment was found to induce a significant increase of damage equivalent load (DEL) mainly in the most downstream row of turbines. We also found that the sign (positive or negative) of the yaw misalignment affects differently the dynamic loads and the DEL on the turbines. Thus, it is important to consider both the power production and the blade fatigue loads to evaluate the benefits of intentional yaw misalignment control especially in conditions with low turbulence intensity upstream of the wind farm.more » « less
-
Abstract This paper presents results from wind tunnel experiments to evaluate power gains from wake steering via yaw control. An experimental scaled wind farm with 12 turbines in an aligned rectangular array is used. Wake steering is performed by yawing turbines using a closed-loop algorithm termed the Log-of-Power Proportional Integral Extremum Seeking Control (LP-PIESC). Two configurations are considered. In the first configuration, the turbines in the first two upstream rows are controlled. In the second case, yaw control is applied to the turbines in the first upstream row and the third row. For both cases, uncontrolled turbines have no yaw misalignment. The results show that by independent parallel maximization of the power sum of a reduced number of turbines, it is possible to obtain a close approximation of the true maximum power. The data shows that the LP-PIESC algorithm can converge relatively fast compared to traditional ESC algorithms.more » « less
-
Icing on the blades of wind turbines during winter seasons causes a reduction in power and revenue losses. The prediction of icing before it occurs has the potential to enable mitigating actions to reduce ice accumulation. This paper presents a framework for the prediction of icing on wind turbines based on Supervisory Control and Data Acquisition (SCADA) data without requiring the installation of any additional icing sensors on the turbines. A Temporal Convolutional Network is considered as the model to predict icing from the SCADA data time series. All aspects of the icing prediction framework are described, including the necessary data preprocessing, the labeling of SCADA data for icing conditions, the selection of informative icing features or variables in SCADA data, and the design of a Temporal Convolutional Network as the prediction model. Two performance metrics to evaluate the prediction outcome are presented. Using SCADA data from an actual wind turbine, the model achieves an average prediction accuracy of 77.6% for future times of up to 48 h.more » « less
An official website of the United States government
