Abstract This paper presents results from wind tunnel experiments to evaluate power gains from wake steering via yaw control. An experimental scaled wind farm with 12 turbines in an aligned rectangular array is used. Wake steering is performed by yawing turbines using a closed-loop algorithm termed the Log-of-Power Proportional Integral Extremum Seeking Control (LP-PIESC). Two configurations are considered. In the first configuration, the turbines in the first two upstream rows are controlled. In the second case, yaw control is applied to the turbines in the first upstream row and the third row. For both cases, uncontrolled turbines have no yaw misalignment. The results show that by independent parallel maximization of the power sum of a reduced number of turbines, it is possible to obtain a close approximation of the true maximum power. The data shows that the LP-PIESC algorithm can converge relatively fast compared to traditional ESC algorithms.
more »
« less
Impact of yaw misalignment on turbine loads in the presence of wind farm blockage
Summary Wake steering is very effective in optimizing the power production of an array of turbines aligned with the wind direction. However, the wind farm behaves as a porous obstacle for the incoming flow, inducing a secondary flow in the lateral direction and a reduction of the upstream wind speed. This is normally referred to as blockage effect. Little is known on how the blockage and the secondary flow influence the loads on the turbines when an intentional yaw misalignment is applied to steer the wake. In this work, we assess the variation of the loads on a virtual 4 by 4 array of turbines with intentional yaw misalignment under different levels of turbulence intensity. We estimate the upstream distance at which the incoming wind is influenced by the wind farm, and we determine the wind farm blockage effect on the loads. In presence of low turbulence intensity in the incoming flow, the application of yaw misalignment was found to induce a significant increase of damage equivalent load (DEL) mainly in the most downstream row of turbines. We also found that the sign (positive or negative) of the yaw misalignment affects differently the dynamic loads and the DEL on the turbines. Thus, it is important to consider both the power production and the blade fatigue loads to evaluate the benefits of intentional yaw misalignment control especially in conditions with low turbulence intensity upstream of the wind farm.
more »
« less
- Award ID(s):
- 1916776
- PAR ID:
- 10561670
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Wind Energy
- Volume:
- 27
- Issue:
- 6
- ISSN:
- 1095-4244
- Page Range / eLocation ID:
- 535 to 548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Collective wind farm flow control, where wind turbines are operated in an individually suboptimal strategy to benefit the aggregate farm, has demonstrated potential to reduce wake interactions and increase farm energy production. However, existing wake models used for flow control often estimate the thrust and power of yaw-misaligned turbines using simplified empirical expressions that require expensive calibration data and do not extrapolate accurately between turbine models. The thrust, wake velocity deficit, wake deflection and power of a yawed wind turbine depend on its induced velocity. Here, we extend classical one-dimensional momentum theory to model the induction of a yaw-misaligned actuator disk. Analytical expressions for the induction, thrust, initial wake velocities and power are developed as a function of the yaw angle ( $$\gamma$$ ) and thrust coefficient. The analytical model is validated against large eddy simulations of a yawed actuator disk. Because the induction depends on the yaw and thrust coefficient, the power generated by a yawed actuator disk will always be greater than a $$\cos ^3(\gamma )$$ model suggests. The power lost due to yaw misalignment depends on the thrust coefficient. An analytical expression for the thrust coefficient that maximizes power, depending on the yaw, is developed and validated. Finally, using the developed induction model as an initial condition for a turbulent far-wake model, we demonstrate how combining wake steering and thrust (induction) control can increase array power, compared to either independent steering or induction control, due to the joint dependence of the induction on the thrust coefficient and yaw angle.more » « less
-
Wind tunnel experiments were performed to quantify the coupling mechanisms between incoming wind flows, power output fluctuations, and unsteady tower aerodynamic loads of a model wind turbine under periodically oscillating wind environments across various yaw misalignment angles. A high-resolution load cell and a data logger at high temporal resolution were applied to quantify the aerodynamic loads and power output, and time-resolved particle image velocimetry system was used to characterize incoming and wake flow statistics. Results showed that due to the inertia of the turbine rotor, the time series of power output exhibits a distinctive phase lag compared to the incoming periodically oscillating wind flow, whereas the phase lag between unsteady aerodynamic loads and incoming winds was negligible. Reduced-order models based on the coupling between turbine properties and incoming periodic flow characteristics were derived to predict the fluctuation intensity of turbine power output and the associated phase lag, which exhibited reasonable agreement with experiments. Flow statistics demonstrated that under periodically oscillating wind environments, the growth of yaw misalignment could effectively mitigate the overall flow fluctuation in the wake region and significantly enhance the stream-wise wake velocity cross correlation intensities downstream of the turbine hub location.more » « less
-
To maximize the profitability of wind power plants, wind farms are often characterized by high wind turbine density leading to operations with reduced turbine spacing. As a consequence, the overall wind farm power capture is hindered by complex flow features associated with flow modifications induced by the various wind turbine rotors. In addition to the generation of wakes, the velocity of the incoming wind field can reduce due to the increased pressure in the proximity of a single turbine rotor (named induction); a similar effect occurs at the wind-farm level (global blockage), which can have a noticeable impact on power production. On the other hand, intra-wind-farm regions featuring increased velocity compared to the freestream (speedups) have also been observed, which can be a source for a potential power boost. To quantify these rotor-induced effects on the incoming wind velocity field, three profiling LiDARs and one scanning wind LiDAR were deployed both before and after the construction of an onshore wind turbine array. The different wind conditions are classified according to the ambient turbulence intensity and streamwise/spanwise spacing among wind turbines. The analysis of the mean velocity field reveals enhanced induction and speedup under stably stratified atmospheric conditions. Furthermore, a reduced horizontal area between adjacent turbines has a small impact on the induction zone but increases significantly the speedup between adjacent rotors.more » « less
-
Light detection and ranging (LiDAR) measurements of isolated wakes generated by wind turbines installed at an onshore wind farm are leveraged to characterize the variability of the wake mean velocity and turbulence intensity during typical operations, which encompass a breadth of atmospheric stability regimes and rotor thrust coefficients. The LiDAR measurements are clustered through the k-means algorithm, which enables identifying the most representative realizations of wind turbine wakes while avoiding the imposition of thresholds for the various wind and turbine parameters. Considering the large number of LiDAR samples collected to probe the wake velocity field, the dimensionality of the experimental dataset is reduced by projecting the LiDAR data on an intelligently truncated basis obtained with the proper orthogonal decomposition (POD). The coefficients of only five physics-informed POD modes are then injected in the k-means algorithm for clustering the LiDAR dataset. The analysis of the clustered LiDAR data and the associated supervisory control and data acquisition and meteorological data enables the study of the variability of the wake velocity deficit, wake extent, and wake-added turbulence intensity for different thrust coefficients of the turbine rotor and regimes of atmospheric stability. Furthermore, the cluster analysis of the LiDAR data allows for the identification of systematic off-design operations with a certain yaw misalignment of the turbine rotor with the mean wind direction.more » « less