skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rotenberg, Eli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tomonaga-Luttinger liquid (TLL) behavior in one-dimensional systems has been predicted and shown to occur at semiconductor-to-metal transitions within two-dimensional materials. Reports of one-dimensional defects hosting a Fermi liquid or a TLL have suggested a dependence on the underlying substrate, however, unveiling the physical details of electronic contributions from the substrate require cross-correlative investigation. Here, we study TLL formation within defectively engineered WS2atop graphene, where band structure and the atomic environment is visualized with nano angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy, and non-contact atomic force microscopy. Correlations between the local density of states and electronic band dispersion elucidated the electron transfer from graphene into a TLL hosted by one-dimensional metal (1DM) defects. It appears that the vertical heterostructure with graphene and the induced charge transfer from graphene into the 1DM is critical for the formation of a TLL. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Electronic flat bands associated with quenched kinetic energy and heavy electron mass have attracted great interest for promoting strong electronic correlations and emergent phenomena such as high-temperature charge fractionalization and superconductivity. Intense experimental and theoretical research has been devoted to establishing the rich nontrivial metallic and heavy fermion phases intertwined with such localized electronic states. Here, we investigate the transition metal oxide spinel LiV2O4, an enigmatic heavy fermion compound lacking localizedforbital states. We use angle-resolved photoemission spectroscopy and dynamical mean-field theory to reveal a kind of correlation-induced flat band with suppressed interatomic electron hopping arising from intra-atomic Hund’s coupling. The appearance of heavy quasiparticles is ascribed to a proximate orbital-selective Mott state characterized by fluctuating local moments as evidenced by complementary magnetotransport measurements. The spectroscopic fingerprints of long-lived quasiparticles and their disappearance with increasing temperature further support the emergence of a high-temperature “bad” metal state observed in transport data. This work resolves a long-standing puzzle on the origin of heavy fermion behavior and unconventional transport in LiV2O4. Simultaneously, it opens a path to achieving flat bands through electronic interactions ind-orbital systems with geometrical frustration, potentially enabling the realization of exotic phases of matter such as the fractionalized Fermi liquids. 
    more » « less
  3. Free, publicly-accessible full text available October 1, 2026
  4. Abstract Harnessing electronic excitations involving coherent coupling to bosonic modes is essential for the design and control of emergent phenomena in quantum materials. In situations where charge carriers induce a lattice distortion due to the electron-phonon interaction, the conducting states get “dressed, which leads to the formation of polaronic quasiparticles. The exploration of polaronic effects on low-energy excitations is in its infancy in two-dimensional materials. Here, we present the discovery of an interlayer plasmon polaron in heterostructures composed of graphene on top of single-layer WS2. By using micro-focused angle-resolved photoemission spectroscopy during in situ doping of the top graphene layer, we observe a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the single-layer WS2conduction band minimum. Our results are explained by an effective many-body model in terms of a coupling between single-layer WS2conduction electrons and an interlayer plasmon mode. It is important to take into account the presence of such interlayer collective modes, as they have profound consequences for the electronic and optical properties of heterostructures that are routinely explored in many device architectures involving 2D transition metal dichalcogenides. 
    more » « less
  5. Free, publicly-accessible full text available December 1, 2026
  6. Abstract The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems. Here, we demonstrate a method for synthesizing heterostructures comprising magnetic intercalation compounds of transition metal dichalcogenides (TMDs), through directed topotactic reaction of the TMD with a metal oxide. The mechanism of the intercalation reaction enables thermally initiated intercalation of the TMD from lithographically patterned oxide films, giving access to a family of multi-component magnetic architectures through the combination of deterministic van der Waals assembly and directed intercalation chemistry. 
    more » « less
  7. Abstract The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1–13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14–24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. 
    more » « less
  8. A scalable platform to synthesize ultrathin heavy metals may enable high efficiency charge-to-spin conversion for next-generation spintronics. Here we report the synthesis of air-stable, epitaxially registered monolayer Pb underneath graphene on SiC (0001) by confinement heteroepitaxy (CHet). Diffraction, spectroscopy, and microscopy reveal CHet-based Pb intercalation predominantly exhibits a mottled hexagonal superstructure due to an ordered network of Frenkel-Kontorova-like domain walls. The system’s air stability enables ex-situ spin torque ferromagnetic resonance (ST-FMR) measurements that demonstrate charge-to-spin conversion in graphene/Pb/ferromagnet heterostructures with a 1.5× increase in the effective field ratio compared to control samples. 
    more » « less