skip to main content


Search for: All records

Creators/Authors contains: "Rothemund, Philipp"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Although soft devices (grippers, actuators, and elementary robots) are rapidly becoming an integral part of the broad field of robotics, autonomy for completely soft devices has only begun to be developed. Adaptation of conventional systems of control to soft devices requires hard valves and electronic controls. This paper describes completely soft pneumatic digital logic gates having a physical scale appropriate for use with current (macroscopic) soft actuators. Each digital logic gate utilizes a single bistable valve—the pneumatic equivalent of a Schmitt trigger—which relies on the snap-through instability of a hemispherical membrane to kink internal tubes and operates with binary high/low input and output pressures. Soft, pneumatic NOT, AND, and OR digital logic gates—which generate known pneumatic outputs as a function of one, or multiple, pneumatic inputs—allow fabrication of digital logic circuits for a set–reset latch, two-bit shift register, leading-edge detector, digital-to-analog converter (DAC), and toggle switch. The DAC and toggle switch, in turn, can control and power a soft actuator (demonstrated using a pneu-net gripper). These macroscale soft digital logic gates are scalable to high volumes of airflow, do not consume power at steady state, and can be reconfigured to achieve multiple functionalities from a single design (including configurations that receive inputs from the environment and from human users). This work represents a step toward a strategy to develop autonomous control—one not involving an electronic interface or hard components—for soft devices.

     
    more » « less
  3. Abstract

    Future robots and intelligent systems will autonomously navigate in unstructured environments and closely collaborate with humans; integrated with our bodies and minds, they will allow us to surpass our physical limitations. Traditional robots are mostly built from rigid, metallic components and electromagnetic motors, which make them heavy, expensive, unsafe near people, and ill‐suited for unpredictable environments. By contrast, biological organisms make extensive use of soft materials and radically outperform robots in terms of dexterity, agility, and adaptability. Particularly, natural muscle—a masterpiece of evolution—has long inspired researchers to create “artificial muscles” in an attempt to replicate its versatility, seamless integration with sensing, and ability to self‐heal. To date, natural muscle remains unmatched in all‐round performance, but rapid advancements in soft robotics have brought viable alternatives closer than ever. Herein, the recent development of hydraulically amplified self‐healing electrostatic (HASEL) actuators, a new class of high‐performance, self‐sensing artificial muscles that couple electrostatic and hydraulic forces to achieve diverse modes of actuation, is discussed; current designs match or exceed natural muscle in many metrics. Research on materials, designs, fabrication, modeling, and control systems for HASEL actuators is detailed. In each area, research opportunities are identified, which together lays out a roadmap for actuators with drastically improved performance. With their unique versatility and wide potential for further improvement, HASEL actuators are poised to play an important role in a paradigm shift that fundamentally challenges the current limitations of robotic hardware toward future intelligent systems that replicate the vast capabilities of biological organisms.

     
    more » « less
  4. Abstract

    The impressive locomotion and manipulation capabilities of spiders have led to a host of bioinspired robotic designs aiming to reproduce their functionalities; however, current actuation mechanisms are deficient in either speed, force output, displacement, or efficiency. Here—using inspiration from the hydraulic mechanism used in spider legs—soft‐actuated joints are developed that use electrostatic forces to locally pressurize a hydraulic fluid, and cause flexion of a segmented structure. The result is a lightweight, low‐profile articulating mechanism capable of fast operation, high forces, and large displacement; these devices are termed spider‐inspired electrohydraulic soft‐actuated (SES) joints. SES joints with rotation angles up to 70°, blocked torques up to 70 mN m, and specific torques up to 21 N m kg−1are demonstrated. SES joints demonstrate high speed operation, with measured roll‐off frequencies up to 24 Hz and specific power as high as 230 W kg−1—similar to human muscle. The versatility of these devices is illustrated by combining SES joints to create a bidirectional joint, an artificial limb with independently addressable joints, and a compliant gripper. The lightweight, low‐profile design, and high performance of these devices, makes them well‐suited toward the development of articulating robotic systems that can rapidly maneuver.

     
    more » « less
  5. Abstract

    A method for active noise cancelation that uses an optically transparent membrane is described. The membrane consists of a prestretched hydrophobic elastomer, attached to a rigid frame and sandwiched between two hydrogels swollen with an aqueous solution of salt. The elastomer functions as a dielectric, and the hydrogel functions as an ionic conductor. When the two hydrogels are subjected to a sinusoidal voltage, the membrane generates sound. A linear model for the reflection, transmission, and generation of sound by the membrane in an impedance tube is presented and validated. Active noise cancelation is demonstrated using the linear model and feedforward control. Compared to passive sound absorption, the sound transmission loss across the membrane is improved with active control from an average value of 7 dB to an average value of 16 dB. The transparent membrane may be used to cancel noises through a window, while maintaining its transparency.

     
    more » « less
  6. Abstract

    This paper describes the fabrication of elastomeric three‐dimensional (3D) structures starting from two‐dimensional (2D) sheets using a combination of direct‐ink printing and relaxation of strain. These structures are fabricated in a two‐step process: first, elastomeric inks are deposited as 2D structures on a stretched elastomeric sheet, and second, after curing of the elastomeric inks, relaxation of strain in the 2D sheet causes it to deform into a 3D shape. To predict bending of elastomeric objects fabricated with this technique, a simple mechanical model is developed. The strategy of using initially 2D materials to fabricate 3D structures offers four new features that complement digital fabrication techniques. (i) It provides a simple route to create shapes with complex curves, suspended features, and internal cavities. (ii) It is a faster method of fabricating some types of shapes than “conventional” 3D printing, because the features are printed in 2D. (iii) It forms surfaces that can be both smoother, and structured in a way that is not compatible with layer‐by‐layer processing. (iv) It forms structures that can be deformed reversibly after fabrication by reapplying strain. This paper demonstrates these features by fabrication of helices, structures inspired by cubes and tables, “pop‐up” structures, and soft grippers.

     
    more » « less
  7. Abstract

    This article describes a new principle for designing soft or ‘semisoft’ pneumatic actuators: SLiT (for SLit‐in‐Tube) actuators. Inflating an elastomeric balloon, when enclosed by an external shell (a material with higher Young's modulus) containing slits of different directions and lengths, produces a variety of motions, including bending, twisting, contraction, and elongation. The requisite pressure for actuation depends on the length of the slits, and this dependence allows sequential actuation by controlling the applied pressure. Different actuators can also be controlled using external “sliders” that act as reprogrammable “on‐off” switches. A pneumatic arm and a walker constructed from SLiT actuators demonstrate their ease of fabrication and the range of motions they can achieve.

     
    more » « less