skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rotshtein, Shaked"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The circumgalactic medium (CGM) in $$\gtrsim 10^{12}\ \mathrm{M}_{\odot }$$ haloes is dominated by a hot phase ($$T \gtrsim 10^{6}$$ K). While many models exist for the hot gas structure, there is as yet no consensus. We compare cooling flow models, in which the hot CGM flows inwards due to radiative cooling, to the CGM of $$\sim 10^{12}{\,\rm to\,}10^{13}\ \mathrm{M}_{\odot }$$ haloes in galaxy formation simulations from the Feedback in Realistic Environments (FIRE) project at $$z\sim 0$$. The simulations include realistic cosmological evolution and feedback from stars but neglect AGN feedback. At both mass scales, CGM inflows are typically dominated by the hot phase rather than by the ‘precipitation’ of cold gas. Despite being highly idealized, we find that cooling flows describe $$\sim 10^{13}\ \mathrm{M}_{\odot }$$ haloes very well, with median agreement in the density and temperature profiles of $$\sim 20{{\ \rm per\ cent}}$$ and $$\sim 10{{\ \rm per\ cent}}$$, respectively. This indicates that stellar feedback has little impact on CGM scales in those haloes. For $$\sim 10^{12}\ \mathrm{M}_{\odot }$$ haloes, the thermodynamic profiles are also accurately reproduced in the outer CGM. For some of these lower-mass haloes, cooling flows significantly overpredict the hot gas density in the inner CGM. This could be due to multidimensional angular momentum effects not well captured by our one-dimensional cooling flow models and/or to the larger cold gas fractions in these regions. Turbulence, which contributes $$\sim 10{\!-\!}40{{\ \rm per\ cent}}$$ of the total pressure, must be included to accurately reproduce the temperature profiles. Overall, cooling flows predict entropy profiles in better agreement with the FIRE simulations than other idealized models in the literature. 
    more » « less