Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Incipient soot particles obtained from a series of reactive molecular dynamics simulations were studied to understand the evolution of physical, chemical, and morphological properties of incipient soot. Reactive molecular dynamics simulations of acetylene pyrolysis were performed using ReaxFF potential at 1350, 1500, 1650, and 1800 K. A total of 3324 incipient soot particles were extracted from the simulations at various stages of development. Features such as the number of carbon and hydrogen atoms, number of ring structures, mass, C/H ratio, radius of gyration, surface area, volume, atomic fractal dimension, and density were calculated for each particle. The calculated values of density and C/H ratio matched well with experimental values reported in the literature. Based on the calculated features, the particles were classified in two types: type 1 and type 2 particles. It was found that type 1 particles show significant morphological evolution while type 2 particles undergo chemical restructuring without any significant morphological change. The particle volume was found to be well-correlated with the number of carbon atoms in both type 1 and type 2 particle, whereas surface area was found to be correlated with the number of carbon atoms only for type 1 particles. A correlation matrix comparing the level of correlation between any two features for both type 1 and type 2 particle was created. Finally, based on the calculated statistics, a set of correlations among various physical and morphological parameters of incipient soot was proposed.more » « lessFree, publicly-accessible full text available October 1, 2025
-
A series of reactive molecular dynamics simulations is used to study the internal structure of incipient soot particles obtained from acetylene pyrolysis. The simulations were performed using ReaxFF potential at four different temperatures. The resulting soot particles are cataloged and analyzed to obtain statistics of their mass, volume, density, C/H ratio, number of cyclic structures, and other features. A total of 3324 incipient soot particles were analyzed in this study. Based on their structural characteristics, the incipient soot particles are classified into two classes, referred to as type 1 and type 2 incipient soot particles in this work. The radial distribution of density, cyclic (5-, 6-, or 7-member rings) structures, and C/H ratio inside the particles revealed a clear difference in the internal structure between type 1 and type 2 particles. These classes were further found to be well represented by the size of the particles, with smaller particles in type 1 and larger particles in type 2. The radial distributions of ring structures, density, and C/H ratio indicated the presence of a dense core region in type 2 particles. In contrast, no clear evidence of the presence of a core was found in type 1 particles. In type 2 incipient soot particles, the boundary between the core and shell was found to be around 50%–60% of the particle radius of gyration.more » « lessFree, publicly-accessible full text available July 4, 2025
-
Modeling thermal radiation in combustion environments can be extremely challenging for two main reasons. First, the radiative transfer equation (RTE), which is the cornerstone of modeling radiation in such environments, is a five-dimensional integro-differential equation. Second, the absorption and scattering coefficients of molecular gases and particulates prevalent in combustion environments oscillate strongly with the wavenumber (or wavelength), i.e., the medium is strongly nongray, requiring the solution of the RTE for a large number of wavenumbers. This article reviews the progress that has been made in this area to date with an emphasis on the work performed over the past three decades. Progress in both deterministic and stochastic (Monte Carlo) solutions of the RTE is reviewed, in addition to the review of the treatment of the spectral properties of gases, soot, and fuel droplets that dominate combustion environments, i.e., spectral or nongray models. The application of the various state-of-the-art nongray models and RTE solution methods to flames (particularly turbulent), fires, combustors, and other combustion systems are summarized along with a critical discussion of the pros and cons of the models and methods. Finally, the challenges that remain in modeling thermal radiation in combustion systems are highlighted and future outlooks are shared.more » « less
-
Abstract Numerical modeling of radiative transfer in nongray reacting media is a challenging problem in computational science and engineering. The choice of radiation models is important for accurate and efficient high-fidelity combustion simulations. Different applications usually involve different degrees of complexity, so there is yet no consensus in the community. In this paper, the performance of different radiative transfer equation (RTE) solvers and spectral models for a turbulent piloted methane/air jet flame are studied. The flame is scaled from the Sandia Flame D with a Reynolds number of 22,400. Three classes of RTE solvers, namely the discrete ordinates method, spherical harmonics method, and Monte Carlo method, are examined. The spectral models include the Planck-mean model, the full-spectrum k-distribution (FSK) method, and the line-by-line (LBL) calculation. The performances of different radiation models in terms of accuracy and computational cost are benchmarked. The results have shown that both RTE solvers and spectral models are critical in the prediction of radiative heat source terms for this jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty are discussed in detail. The results can be used as a reference for radiation model selection in combustor simulations.more » « less