skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 4, 2025

Title: Internal Structure of Incipient Soot from Acetylene Pyrolysis Obtained via Molecular Dynamics Simulations
A series of reactive molecular dynamics simulations is used to study the internal structure of incipient soot particles obtained from acetylene pyrolysis. The simulations were performed using ReaxFF potential at four different temperatures. The resulting soot particles are cataloged and analyzed to obtain statistics of their mass, volume, density, C/H ratio, number of cyclic structures, and other features. A total of 3324 incipient soot particles were analyzed in this study. Based on their structural characteristics, the incipient soot particles are classified into two classes, referred to as type 1 and type 2 incipient soot particles in this work. The radial distribution of density, cyclic (5-, 6-, or 7-member rings) structures, and C/H ratio inside the particles revealed a clear difference in the internal structure between type 1 and type 2 particles. These classes were further found to be well represented by the size of the particles, with smaller particles in type 1 and larger particles in type 2. The radial distributions of ring structures, density, and C/H ratio indicated the presence of a dense core region in type 2 particles. In contrast, no clear evidence of the presence of a core was found in type 1 particles. In type 2 incipient soot particles, the boundary between the core and shell was found to be around 50%–60% of the particle radius of gyration.  more » « less
Award ID(s):
2144290
PAR ID:
10584349
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
128
Issue:
26
ISSN:
1089-5639
Page Range / eLocation ID:
5175 to 5187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incipient soot particles obtained from a series of reactive molecular dynamics simulations were studied to understand the evolution of physical, chemical, and morphological properties of incipient soot. Reactive molecular dynamics simulations of acetylene pyrolysis were performed using ReaxFF potential at 1350, 1500, 1650, and 1800 K. A total of 3324 incipient soot particles were extracted from the simulations at various stages of development. Features such as the number of carbon and hydrogen atoms, number of ring structures, mass, C/H ratio, radius of gyration, surface area, volume, atomic fractal dimension, and density were calculated for each particle. The calculated values of density and C/H ratio matched well with experimental values reported in the literature. Based on the calculated features, the particles were classified in two types: type 1 and type 2 particles. It was found that type 1 particles show significant morphological evolution while type 2 particles undergo chemical restructuring without any significant morphological change. The particle volume was found to be well-correlated with the number of carbon atoms in both type 1 and type 2 particle, whereas surface area was found to be correlated with the number of carbon atoms only for type 1 particles. A correlation matrix comparing the level of correlation between any two features for both type 1 and type 2 particle was created. Finally, based on the calculated statistics, a set of correlations among various physical and morphological parameters of incipient soot was proposed. 
    more » « less
  2. Soot or black carbons are combustion-generated carbonaceous nanoparticles formed during the incomplete combustion of hydrocarbon fuels. The complexity of hydrocarbon systems often makes it difficult to investigate the fundamentals of soot formation experimentally. To address this, this study uses reactive molecular dynamics simulations with reactive force field (ReaxFF) potentials. The current work focuses on the formation and evolution of soot during acetylene pyrolysis. The analysis provides insights into the physicochemical aspects of soot formation and the maturation of incipient soot particles. In this work, we focus on the evolution and interdependence of features such as the number of carbon atoms, number of aromatic rings, mass, C/H ratio, the radius of gyration, atomic fractal dimension, surface area, volume, and density. Based on the physicochemical features, two distinct classes of nascent soot can be observed. These are termed type-1 and type-2 particles. The type-1 particles show significant morphological evolution, while the type-2 particles show chemical restructuring without significantly changing the morphology. Qualitative correlations of various degrees are also observed between some of these morphological features. 
    more » « less
  3. Abstract. Soot inception by acetylene pyrolysis at 1350–1800 K is investigated using reactive molecular dynamics. The composition and chemical structure of soot precursor molecules formed during inception are elucidated. During soot inception, increasing the process temperature leads to faster depletion of C2H2 molecules and faster formation of C2H3, C2H4, C2H6, CH4, and C2 with the concurrent appearance of H2 molecules. Small molecules consisting of 1–5 C atoms (C1–C5) are formed due to reactive collisions and grow further to larger hydrocarbon compounds consisting of 6–10 C atoms. At initial stages of inception, prior to the formation of incipient soot, three-member rings are formed, which are associated with the formation of compounds with fewer than 10 C atoms. Once incipient soot is formed, the number of C1–C10 compounds and the number of three-member rings drop, while the number of five- and six-member rings increases, indicating that the formation of larger rings is associated with the growth of soot clusters. The chemical structure of soot precursor molecules obtained by bond order analysis reveals that molecules with up to 10 C atoms are either linear or branched aliphatic compounds or may contain three-member rings fused with aliphatic components. Molecules with more than 10 C atoms often exhibit structures composed of five- or six-member C rings, decorated by aliphatic components. The identification of molecular precursors contributing to soot inception provides crucial insights into soot formation mechanisms, pinpointing potential pathways of soot formation during combustion. 
    more » « less
  4. Abstract This study documents the presence of ice in stratocumulus clouds with cloud top temperatures (CTT) > −5 °C in the cold sector of extratropical cyclones over the Southern Ocean (SO) during ten SO Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) research flights. Case studies are presented showing ice signatures within clouds when CTT were between −2 and −5°C, evidenced in Doppler radar radial velocity changes observed during high‐altitude flight legs as ice particles melted across the 0°C isotherm. Ice on these legs was found to contribute to precipitation 3.8% of the time from clouds with −5°C < CTT <0°C. Clouds observed with a distinct melting level on high‐altitude flight legs overall had greater cloud depths, tops with higher reflectivities, and higher linear depolarization ratios, compared to clouds without a melting level. In situ flight legs were also analyzed when Himawari‐8 CTT were between 0 and −5°C and the aircraft was sampling in cloud within that temperature range. It was found that 3% of clouds sampled in situ with −5°C < CTT <0°C were mixed phase with a mean number concentration of 2.35 L−1for nonspherical particles with maximum diameters >100 μm and 1.13 L−1for nonspherical particles with maximum diameters >200 μm. 
    more » « less
  5. null (Ed.)
    Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on other periodontal cell types, such as gingival fibroblasts, remain to be clarified. The present aim was to examine the independent and combined effects of these cyclic dinucleotides and LPS on interleukin (IL) and matrix metalloproteinase (MMP) response of HGFs. The cells were incubated with c-di-GMP and c-di-AMP, either in the presence or absence of Porphyromonas gingivalis LPS, for 2 h and 24 h. The levels of IL-8, -10, and -34, and MMP-1, -2, and -3 secreted were measured by the Luminex technique. LPS alone or together with cyclic dinucleotides elevated IL-8 levels. IL-10 levels were significantly increased in the presence of c-di-GMP and LPS after 2 h but disappeared after 24 h of incubation. Concurrent treatment of c-di-AMP and LPS elevated MMP-1 levels, whereas c-di-GMP with LPS suppressed MMP-2 levels but increased MMP-3 levels. To conclude, we produce evidence that cyclic dinucleotides interact with LPS-mediated early response of gingival fibroblasts, while late cellular response is mainly regulated by LPS. 
    more » « less