Relativistic magnetically dominated turbulence is an efficient engine for particle acceleration in a collisionless plasma. Ultrarelativistic particles accelerated by interactions with turbulent fluctuations form nonthermal power-law distribution functions in the momentum (or energy) space,
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract f (γ )d γ ∝γ −α d γ , whereγ is the Lorenz factor. We argue that in addition to exhibiting non-Gaussian distributions over energies, particles energized by relativistic turbulence also become highly intermittent in space. Based on particle-in-cell numerical simulations and phenomenological modeling, we propose that the bulk plasma density has lognormal statistics, while the density of the accelerated particles,n , has a power-law distribution function, . We argue that the scaling exponents are related asβ ≈α + 1, which is broadly consistent with numerical simulations. Non-space-filling, intermittent distributions of plasma density and energy fluctuations may have implications for plasma heating and for radiation produced by relativistic turbulence. -
Abstract Using ion tracing in a model shock front we study heating of thermal (Maxwellian) and superthermal (Vasyliunas–Siscoe) populations of protons, singly charged helium, and alpha particles. It is found that heating of thermal and superthermal populations is different, mainly because of substantially higher ion reflection in the superthermal populations. Accordingly, the temperature increase of initially superthermal populations is substantially higher than that of the thermal ions. Heating per mass decreases with the increase of the mass-to-charge ratio because of the reduced effect of the cross-shock potential and, accordingly, weaker ion reflection. The findings are supported by two-dimensional hybrid simulations.Free, publicly-accessible full text available March 1, 2024
-
A collisionless shock is a self-organized structure where fields and particle distributions are mutually adjusted to ensure a stable mass, momentum and energy transfer from the upstream to the downstream region. This adjustment may involve rippling, reformation or whatever else is needed to maintain the shock. The fields inside the shock front are produced due to the motion of charged particles, which is in turn governed by the fields. The overshoot arises due to the deceleration of the ion flow by the increasing magnetic field, so that the drop of the dynamic pressure should be compensated by the increase of the magnetic pressure. The role of the overshoot is to regulate ion reflection, thus properly adjusting the downstream ion temperature and kinetic pressure and also speeding up the collisionless relaxation and reducing the anisotropy of the eventually gyrotropized distributions.Free, publicly-accessible full text available April 1, 2024
-
Abstract Collisionless shocks channel the energy of the directed plasma flow into the heating of the plasma species and magnetic field enhancement. The kinetic processes at the shock transition cause the ion distributions just behind the shock to be nongyrotropic. Gyrotropization and subsequent isotropization occur at different spatial scales. Accordingly, for a given upstream plasma and magnetic field state, there would be different downstream states corresponding to the anisotropic and isotropic regions. Thus, at least two sets of Rankine–Hugoniot relations are needed, in general, to describe the connection of the downstream measurable parameters to the upstream ones. We establish the relation between the two sets.Free, publicly-accessible full text available November 1, 2023
-
Abstract We present a phenomenological and numerical study of strong Alfvénic turbulence in a magnetically dominated collisionless relativistic plasma with a strong background magnetic field. In contrast with the nonrelativistic case, the energy in such turbulence is contained in magnetic and electric fluctuations. We argue that such turbulence is analogous to turbulence in a strongly magnetized nonrelativistic plasma in the regime of broken quasi-neutrality. Our 2D particle-in-cell numerical simulations of turbulence in a relativistic pair plasma find that the spectrum of the total energy has the scaling
k −3/2, while the difference between the magnetic and electric energies, the so-called residual energy, has the scalingk −2.4. The electric and magnetic fluctuations at scaleℓ exhibit dynamic alignment with the alignment angle scaling close to . At scales smaller than the (relativistic) plasma inertial scale, the energy spectrum of relativistic inertial Alfvén turbulence steepens tok −3.5. -
Free, publicly-accessible full text available August 1, 2023
-
Abstract The solar wind (SW) and local interstellar medium (LISM) are turbulent media. Their interaction is governed by complex physical processes and creates heliospheric regions with significantly different properties in terms of particle populations, bulk flow and turbulence. Our knowledge of the solar wind turbulence nature and dynamics mostly relies on near-Earth and near-Sun observations, and has been increasingly improving in recent years due to the availability of a wealth of space missions, including multi-spacecraft missions. In contrast, the properties of turbulence in the outer heliosphere are still not completely understood. In situ observations by Voyager and New Horizons , and remote neutral atom measurements by IBEX strongly suggest that turbulence is one of the critical processes acting at the heliospheric interface. It is intimately connected to charge exchange processes responsible for the production of suprathermal ions and energetic neutral atoms. This paper reviews the observational evidence of turbulence in the distant SW and in the LISM, advances in modeling efforts, and open challenges.Free, publicly-accessible full text available September 1, 2023
-
Collisionless shocks efficiently convert the energy of the directed ion flow into their thermal energy. Ion distributions change drastically at the magnetized shock crossing. Even in the absence of collisions, ion dynamics within the shock front is non-integrable and gyrophase dependent. The downstream distributions just behind the shock are not gyrotropic but become so quickly due to the kinematic gyrophase mixing even in laminar shocks. During the gyrotropization all information about gyrophases is lost. Here we develop a mapping of upstream and downstream gyrotropic distributions in terms of scattering probabilities at the shock front. An analytical expression for the probability is derived for directly transmitted ions in the narrow shock approximation. The dependence of the probability on the magnetic compression and the cross-shock potential is demonstrated.
-
Abstract In a collisionless plasma, the energy distribution function of plasma particles can be strongly affected by turbulence. In particular, it can develop a nonthermal power-law tail at high energies. We argue that turbulence with initially relativistically strong magnetic perturbations (magnetization parameter
σ ≫ 1) quickly evolves into a state with ultrarelativistic plasma temperature but mildly relativistic turbulent fluctuations. We present a phenomenological and numerical study suggesting that in this case, the exponentα in the power-law particle-energy distribution function,f (γ )d γ ∝γ −α d γ , depends on magnetic compressibility of turbulence. Our analytic prediction for the scaling exponentα is in good agreement with the numerical results.