skip to main content

Search for: All records

Creators/Authors contains: "Rudie, Gwen C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lyαtomography surveys have begun to produce 3D maps of the intergalactic medium opacity atz∼ 2.5 with megaparsec resolution. These surveys provide an exciting new way to discover and characterize high-redshift overdensities, including the progenitors of today’s massive groups and clusters of galaxies, known as protogroups and protoclusters. We use the IllustrisTNG-300 hydrodynamical simulation to build mock maps that realistically mimic those observed in the LyαTomographic IMACS Survey. We introduce a novel method for delineating the boundaries of structures detected in 3D Lyαflux maps by applying the watershed algorithm. We provide estimators for the dark matter masses of these structures (atz∼ 2.5), their descendant halo masses atz= 0, and the corresponding uncertainties. We also investigate the completeness of this method for the detection of protogroups and protoclusters. Compared to earlier work, we apply and characterize our method over a wider mass range that extends to massive protogroups. We also assess the widely used fluctuating Gunn–Peterson approximation applied to dark-matter-only simulations; we conclude that while it is adequate for estimating the Lyαabsorption signal from moderate-to-massive protoclusters (≳1014.2h−1M), it artificially merges a minority of lower-mass structures with more massive neighbors. Our methods will be applied to current and future Lyαtomography surveys tomore »create catalogs of overdensities and study environment-dependent galactic evolution in the Cosmic Noon era.

    « less
  2. Free, publicly-accessible full text available June 16, 2023
  3. Abstract The chemical abundance patterns of gas and stars in galaxies are powerful probes of galaxies’ star formation histories and the astrophysics of galaxy assembly but are challenging to measure with confidence in distant galaxies. In this paper, we report the first measurements of the correlation between stellar mass ( M * ) and multiple tracers of chemical enrichment (including O, N, and Fe) in individual z ∼ 2–3 galaxies, using a sample of 195 star-forming galaxies from the Keck Baryonic Structure Survey. The galaxies’ chemical abundances are inferred using photoionization models capable of reconciling high-redshift galaxies’ observed extreme rest-UV and rest-optical spectroscopic properties. We find that the M * –O/H relation for our sample is relatively shallow, with moderately large scatter, and is offset ∼0.35 dex higher than the corresponding M * –Fe/H relation. The two relations have very similar slopes, indicating a high level of α -enhancement—O/Fe ≈ 2.2 × (O/Fe) ⊙ —across two decades in M * . The M * –N/H relation has the steepest slope and largest intrinsic scatter, which likely results from the fact that many z ∼ 2 galaxies are observed near or past the transition from “primary” to “secondary” N production, andmore »may reflect uncertainties in the astrophysical origin of N. Together, these results suggest that z ∼ 2 galaxies are old enough to have seen substantial enrichment from intermediate-mass stars, but are still young enough that Type Ia supernovae have not had time to contribute significantly to their enrichment.« less
    Free, publicly-accessible full text available January 31, 2023

    This paper presents a systematic study of the photoionization and thermodynamic properties of the cool circumgalactic medium (CGM) as traced by rest-frame ultraviolet absorption lines around 26 galaxies at redshift z ≲ 1. The study utilizes both high-quality far-ultraviolet and optical spectra of background QSOs and deep galaxy redshift surveys to characterize the gas density, temperature, and pressure of individual absorbing components and to resolve their internal non-thermal motions. The derived gas density spans more than three decades, from $\log (n_{\rm H}/{{\rm cm^{-3}}}) \approx -4$ to −1, while the temperature of the gas is confined in a narrow range of log (T/K) ≈ 4.3 ± 0.3. In addition, a weak anticorrelation between gas density and temperature is observed, consistent with the expectation of the gas being in photoionization equilibrium. Furthermore, decomposing the observed line widths into thermal and non-thermal contributions reveals that more than 30 per cent of the components at z ≲ 1 exhibit line widths driven by non-thermal motions, in comparison to <20 per cent found at z ≈ 2–3. Attributing the observed non-thermal line widths to intra-clump turbulence, we find that massive quenched galaxies on average exhibit higher non-thermal broadening/turbulent energy in their CGM compared to star-forming galaxies at z ≲ 1. Finally,more »strong absorption features from multiple ions covering a wide range of ionization energy (e.g. from Mg ii to O iv) can be present simultaneously in a single absorption system with kinematically aligned component structure, but the inferred pressure in different phases may differ by a factor of ≈10.

    « less
  5. ABSTRACT We present the first statistical analysis of kinematically resolved, spatially extended $\rm Ly\alpha$ emission around z = 2–3 galaxies in the Keck Baryonic Structure Survey (KBSS) using the Keck Cosmic Web Imager (KCWI). Our sample of 59 star-forming galaxies (zmed = 2.29) comprises the subset with typical KCWI integration times of ∼5 h and with existing imaging data from the Hubble Space Telescope and/or adaptive optics-assisted integral field spectroscopy. The high-resolution images were used to evaluate the azimuthal dependence of the diffuse $\rm Ly\alpha$ emission with respect to the stellar continuum within projected galactocentric distances of ≲30 proper kpc. We introduce cylindrically projected 2D spectra (CP2D) that map the averaged $\rm Ly\alpha$ spectral profile over a specified range of azimuthal angle, as a function of impact parameter around galaxies. The averaged CP2D spectrum of all galaxies shows clear signatures of $\rm Ly\alpha$ resonant scattering by outflowing gas. We stacked the CP2D spectra of individual galaxies over ranges of azimuthal angle with respect to their major axes. The extended $\rm Ly\alpha$ emission along the galaxy principal axes is statistically indistinguishable, with residual asymmetry of ≤2 per cent (∼2σ) of the integrated $\rm Ly\alpha$ emission. The symmetry implies that the $\rm Ly\alpha$ scattering medium is dominatedmore »by outflows in all directions within 30 kpc. Meanwhile, we find that the blueshifted component of $\rm Ly\alpha$ emission is marginally stronger along galaxy minor axes for galaxies with relatively weak $\rm Ly\alpha$ emission. We speculate that this weak directional dependence of $\rm Ly\alpha$ emission becomes discernible only when the $\rm Ly\alpha$ escape fraction is low. These discoveries highlight the need for similar analyses in simulations with $\rm Ly\alpha$ radiative transfer modelling.« less
  6. ABSTRACT We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density $N_\mathrm{H\, I}\approx (1-3)\times 10^{16}\, \mathrm{cm}^{-2}$ discovered at $z$ = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred α-element abundance varying from [α/H] ≈−0.8 to near solar and densities spanning over two decades from log nH/cm−3 ≈ −2.2 to <−4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the $z$ = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass ${{M_{\rm star}}}\approx 2\times 10^{10}\, {{M_{\odot}}}$, while the $z$ = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, withmore »the most massive being a luminous red galaxy of ${{M_{\rm star}}}\approx 2\times 10^{11}\, {{M_{\odot}}}$ at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas.« less
  7. Abstract

    We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarfmore »interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.

    « less
  8. ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicitymore »constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium.« less
  9. ABSTRACT We present new measurements of the spatial distribution and kinematics of neutral hydrogen in the circumgalactic and intergalactic medium surrounding star-forming galaxies at z ∼ 2. Using the spectra of ≃3000 galaxies with redshifts 〈z〉 = 2.3 ± 0.4 from the Keck Baryonic Structure Survey, we assemble a sample of more than 200 000 distinct foreground-background pairs with projected angular separations of 3–500 arcsec and spectroscopic redshifts, with 〈zfg〉 = 2.23 and 〈zbg〉 = 2.57 (foreground, background redshifts, respectively.) The ensemble of sightlines and foreground galaxies is used to construct a 2D map of the mean excess $\rm{H\,{\small I}}$$\rm Ly\,\alpha$ optical depth relative to the intergalactic mean as a function of projected galactocentric distance (20 ≲ Dtran/pkpc ≲ 4000) and line-of-sight velocity. We obtain accurate galaxy systemic redshifts, providing significant information on the line-of-sight kinematics of $\rm{H\,{\small I}}$ gas as a function of projected distance Dtran. We compare the map with cosmological zoom-in simulation, finding qualitative agreement between them. A simple two-component (accretion, outflow) analytical model generally reproduces the observed line-of-sight kinematics and projected spatial distribution of $\rm{H\,{\small I}}$. The best-fitting model suggests that galaxy-scale outflows with initial velocity vout ≃ 600 km s$^{-1}\,$ dominate the kinematics of circumgalactic $\rm{H\,{\small I}}$ out to Dtran ≃ 50 kpc, whilemore »$\rm{H\,{\small I}}$ at Dtran ≳ 100 kpc is dominated by infall with characteristic vin ≲ circular velocity. Over the impact parameter range 80 ≲ Dtran/pkpc ≲ 200, the $\rm{H\,{\small I}}$ line-of-sight velocity range reaches a minimum, with a corresponding flattening in the rest-frame $\rm Ly\,\alpha$ equivalent width. These observations can be naturally explained as the transition between outflow-dominated and accretion-dominated flows. Beyond Dtran ≃ 300 pkpc (∼1 cMpc), the line-of-sight kinematics are dominated by Hubble expansion.« less