skip to main content

Search for: All records

Creators/Authors contains: "Rudnick, Lawrence"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present the results of deep Chandra and XMM–Newton observations of a complex merging galaxy cluster Abell 2256 (A2256) that hosts a spectacular radio relic (RR). The temperature and metallicity maps show clear evidence of a merger between the western subcluster (SC) and the primary cluster (PC). We detect five X-ray surface brightness edges. Three of them near the cluster centre are cold fronts (CFs): CF1 is associated with the infalling SC; CF2 is located in the east of the PC; and CF3 is located to the west of the PC core. The other two edges at cluster outskirts are shock fronts (SFs): SF1 near the RR in the NW has Mach numbers derived from the temperature and the density jumps, respectively, of MT = 1.62 ± 0.12 and Mρ = 1.23 ± 0.06; SF2 in the SE has MT = 1.54 ± 0.05 and Mρ = 1.16 ± 0.13. In the region of the RR, there is no evidence for the correlation between X-ray and radio substructures, from which we estimate an upper limit for the inverse-Compton emission, and therefore set a lower limit on the magnetic field (∼ 450 kpc from PC centre) of B > 1.0 μG for a single power-law electron spectrum or B > 0.4 μG for a brokenmore »power-law electron spectrum. We propose a merger scenario including a PC, an SC, and a group. Our merger scenario accounts for the X-ray edges, diffuse radio features, and galaxy kinematics, as well as projection effects.« less
  2. Galaxy clusters form from the infall of dark and baryonic matter at the intersection of cosmic filaments. Most of the baryons are in the form of a hot, magnetized, intracluster plasma detected through its X-ray thermal bremsstrahlung emission. This plasma is tightly coupled to a second, cosmic ray plasma, detected through its synchrotron radio emission. Together, the properties of these plasmas encode the history of the cluster's formation and provide a snapshot of the ongoing cluster evolution. This article provides an overview for the more general astrophysical and space plasma community of the dynamical processes revealed by the diffuse plasma emissions.
  3. Abstract We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$ -steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m −2 within 1 $^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be amore »singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.« less
  4. The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and dark matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
  5. We present observations of linear polarisation in the southern radio lobe of Centaurus A, conducted during commissioning of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. We used 16 antennas to observe a 30 square degree region in a single 12-h pointing over a 240 MHz band centred on 913 MHz. Our observations achieve an angular resolution of 26 × 33 arcseconds (480 parsecs), a maximum recoverable angular scale of 30 arcminutes, and a full-band sensitivity of 85 μ Jy beam − 1 . The resulting maps of polarisation and Faraday rotation are amongst the most detailed ever made for radio lobes, with order 10 5 resolution elements covering the source. We describe several as-yet unreported observational features of the lobe, including its detailed peak Faraday depth structure, and intricate networks of depolarised filaments. These results demonstrate the exciting capabilities of ASKAP for widefield radio polarimetry.