skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruffio, Jean-Baptiste"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
    Free, publicly-accessible full text available July 18, 2025
  2. Abstract The ~5 Myr PDS 70 is the only known system with protoplanets residing in the cavity of the circumstellar disk from which they formed, ideal for studying exoplanet formation and evolution within its natal environment. Here, we report the first spin constraint and C/O measurement of PDS 70b from Keck/KPIC high-resolution spectroscopy. We detected CO (3.8σ) and H2O (3.5σ) molecules in the PDS 70b atmosphere via cross correlation, with a combined CO and H2O template detection significance of 4.2σ. Our forward-model fits, using BT-Settl model grids, provide an upper limit for the spin rate of PDS 70b (<29 km s−1). The atmospheric retrievals constrain the PDS 70b C/O ratio to 0.28 0.12 + 0.20 (<0.63 under 95% confidence level) and a metallicity [C/H] of 0.2 0.5 + 0.8 dex, consistent with that of its host star. The following scenarios can explain our measured C/O of PDS 70b in contrast with that of the gas-rich outer disk (for which C/O ≳ 1). First, the bulk composition of PDS 70b might be dominated by dust+ice aggregates rather than disk gas. Another possible explanation is that the disk became carbon enrichedafterPDS 70b was formed, as predicted in models of disk chemical evolution and as observed in both very low-mass stars and older disk systems with JWST/MIRI. Because PDS 70b continues to accrete and its chemical evolution is not yet complete, more sophisticated modeling of the planet and the disk, and higher-quality observations of PDS 70b (and possibly PDS 70c), are necessary to validate these scenarios. 
    more » « less
  3. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
    Free, publicly-accessible full text available July 18, 2025
  4. Abstract The eccentricity of a substellar companion is an important tracer of its formation history. Directly imaged companions often present poorly constrained eccentricities. A recently developed prior framework for orbit fitting called “observable-based priors” has the advantage of improving biases in derived orbit parameters for objects with minimal phase coverage, which is the case for the majority of directly imaged companions. We use observable-based priors to fit the orbits of 21 exoplanets and brown dwarfs in an effort to obtain the eccentricity distributions with minimized biases. We present the objects’ individual posteriors compared to their previously derived distributions, showing in many cases a shift toward lower eccentricities. We analyze the companions’ eccentricity distribution at a population level, and compare this to the distributions obtained with the traditional uniform priors. We fit a Beta distribution to our posteriors using observable-based priors, obtaining shape parametersα= 1.09 0.22 + 0.30 andβ= 1.42 0.25 + 0.33 . This represents an approximately flat distribution of eccentricities. The derivedαandβparameters are consistent with the values obtained using uniform priors, though uniform priors lead to a tail at high eccentricities. We find that separating the population into high- and low-mass companions yields different distributions depending on the classification of intermediate-mass objects. We also determine via simulation that the minimal orbit coverage needed to give meaningful posteriors under the assumptions made for directly imaged planets is ≈15% of the inferred period of the orbit. 
    more » « less
  5. Abstract We used the Keck Planet Imager and Characterizer to obtain high-resolution (R∼ 35,000)K-band spectra ofκAndromedae b, a planetary-mass companion orbiting the B9V star,κAndromedae A. We characterized its spin, radial velocity, and bulk atmospheric parameters through use of a forward-modeling framework to jointly fit planetary spectra and residual starlight speckles, obtaining likelihood-based posterior probabilities. We also detected H2O and CO in its atmosphere via cross correlation. We measured a v sin ( i ) value forκAndromedae b of 38.42 ± 0.05 km s−1, allowing us to extend our understanding of the population of close-in bound companions at higher rotation rates. This rotation rate is one of the highest spins relative to breakup velocity measured to date, at close to 50% of breakup velocity. We identify a radial velocity 17.35 0.09 + 0.05 km s−1, which we use with existing astrometry and radial velocity measurements to update the orbital fit. We also measure an effective temperature of 1700 ± 100 K and a log ( g ) of 4.7 ± 0.5 cgs dex. 
    more » « less
  6. Abstract We present the projected rotational velocity and molecular abundances for HD 33632 Ab obtained via Keck Planet Imager and Characterizer (KPIC) high-resolution spectroscopy. HD 33632 Ab is a nearby benchmark brown dwarf companion at a separation of ∼20 au that straddles the L–T transition. Using a forward-modeling framework with on-axis host star spectra, which provides self-consistent substellar atmospheric and retrieval models for HD 33632 Ab, we derive a projected rotational velocity of 53 ± 3 km s−1and carbon monoxide and water mass fractions of logCO = −2.3 ± 0.3 and logH2O = −2.7 ± 0.2, respectively. The inferred carbon-to-oxygen ratio (C/O = 0.58 ± 0.14), molecular abundances, and metallicity ([C/H] = 0.0 ± 0.2 dex) of HD 33632 Ab are consistent with its host star. Although detectable methane opacities are expected in L–T transition objects, we did not recover methane in our KPIC spectra, partly due to the highvsiniand to disequilibrium chemistry at the pressures to which we are sensitive. We parameterize the spin as the ratio of rotation to the breakup velocity, and compare HD 33632 Ab to a compilation of >200 very low-mass objects (M≲ 0.1M) that have spin measurements in the literature. There appears to be no clear trend for the isolated low-mass field objects versus mass, but a tentative trend is identified for low-mass companions and directly imaged exoplanets, similar to previous findings. A larger sample of close-in gas giant exoplanets and brown dwarfs will critically examine our understanding of their formation and evolution through rotation and chemical abundance measurements. 
    more » « less
  7. Abstract GQ Lup B is one of the few substellar companions with a detected cicumplanetary disk (CPD). Observations of the CPD suggest the presence of a cavity, possibly formed by an exosatellite. Using the Keck Planet Imager and Characterizer (KPIC), a high-contrast imaging suite that feeds a high-resolution spectrograph (1.9–2.5µm,R∼35,000), we present the first dedicated radial velocity (RV) observations around a high-contrast, directly imaged substellar companion, GQ Lup B, to search for exosatellites. Over 11 epochs, we find a best and median RV error of 400–1000 m s−1, most likely limited by systematic fringing in the spectra due to transmissive optics within KPIC. With this RV precision, KPIC is sensitive to exomoons 0.6%–2.8% the mass of GQ Lup B (∼30MJup) at separations between the Roche limit and 65RJup, or the extent of the cavity inferred within the CPD detected around GQ Lup B. Using simulations of HISPEC, a high resolution infrared spectrograph planned to debut at W.M. Keck Observatory in 2026, we estimate future exomoon sensitivity to increase by over an order of magnitude, providing sensitivity to less massive satellites potentially formed within the CPD itself. Additionally, we run simulations to estimate the amount of material that different masses of satellites could clear in a CPD to create the observed cavity. We find satellite-to-planet mass ratios ofq> 2 × 10−4can create observable cavities and report a maximum cavity size of ∼51RJupcarved from a satellite. 
    more » « less
  8. Abstract We present high-resolutionK-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure–temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the13CO/12CO ratio. We measure mass fractions of logH 2 O = 2.0 0.4 + 0.4 and logCO = 2.2 0.5 + 0.5 , and place upper limits on the remaining species. Notably, we find logCH4< −4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (∼3σ) detection of13CO, and the retrieved posteriors suggest a12C/13C ratio similar to or substantially less than the local interstellar value. The possible13C enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 ± 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b. 
    more » « less
  9. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
    Free, publicly-accessible full text available July 31, 2025
  10. Abstract Using Keck Planet Imager and Characterizer high-resolution (R∼ 35,000) spectroscopy from 2.29 to 2.49μm, we present uniform atmospheric retrievals for eight young substellar companions with masses of ∼10–30MJup, orbital separations spanning ∼50–360 au, andTeffbetween ∼1500 and 2600 K. We find that all companions have solar C/O ratios and metallicities to within the 1σ–2σlevel, with the measurements clustered around solar composition. Stars in the same stellar associations as our systems have near-solar abundances, so these results indicate that this population of companions is consistent with formation via direct gravitational collapse. Alternatively, core accretion outside the CO snowline would be compatible with our measurements, though the high mass ratios of most systems would require rapid core assembly and gas accretion in massive disks. On a population level, our findings can be contrasted with abundance measurements for directly imaged planets withm< 10MJup, which show tentative atmospheric metal enrichment compared to their host stars. In addition, the atmospheric compositions of our sample of companions are distinct from those of hot Jupiters, which most likely form via core accretion. For two companions withTeff∼ 1700–2000 K (κAnd b and GSC 6214–210 b), our best-fit models prefer a nongray cloud model with >3σsignificance. The cloudy models yield 2σ−3σlowerTefffor these companions, though the C/O and [C/H] still agree between cloudy and clear models at the 1σlevel. Finally, we constrain12CO/13CO for three companions with the highest signal-to-noise ratio data (GQ Lup b, HIP 79098b, and DH Tau b) and report v sin i and radial velocities for all companions. 
    more » « less