Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract—Podostemaceae are a clade of aquatic flowering plants that form important components of tropical river ecosystems. Species in the family exhibit highly derived growth forms and high vegetative phenotypic plasticity, both of which contribute to taxonomic confusion. The backbone phylogeny of the family remains poorly resolved, many species remain to be included in a molecular phylogenetic analysis, and the monophyly of many taxa remains to be tested. To address these issues, we assembled sequence data for 73 protein-coding plastid genes from 132 samples representing 68 species (∼23% of described species) that span the breadth of most major taxonomic, morphological, and biogeographic groups of Podostemaceae. With these data, we conducted the first plastid phylogenomic analysis of the family with broad taxon sampling. These analyses resolved most nodes with high support, including relationships not recovered in previous analyses. No evidence of widespread, well-supported conflict among individual plastid genes and the concatenated phylogeny was observed. We present new evidence that four genera (Apinagia,Marathrum,Oserya, andPodostemum), as well as four species, are not monophyletic. In particular, we show thatPodostemum flagelliformeshould not be included inPodostemumand is better recognized asDevillea flagelliformis,and thatMarathrum capillaceumis embedded withinLophogynes.l. and should be recognized asLophogyne capillacea. We also place a previously unsampled and undescribed species that likely represents a new genus. In contrast to previous studies, the neotropical generaDiamantina,Ceratolacis,Cipoia,andPodostemumare resolved as successive sister groups to a clade of all paleotropical Podostemoideae taxa sampled, suggesting a single dispersal event from the neotropics to the paleotropics in the history of the subfamily. These results provide a strong basis for improving the classification of Podostemaceae and a framework for future phylogenomic studies of the clade employing data from the nuclear genome.more » « lessFree, publicly-accessible full text available November 19, 2025
-
Abstract Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.more » « less
An official website of the United States government
