While flowering plants have diversified in virtually every terrestrial clime, climate constrains the distribution of individual lineages. Overcoming climatic constraints may be associated with diverse evolutionary phenomena including whole genome duplication (WGD), gene‐tree conflict, and life‐history changes. Climatic shifts may also have facilitated increases in flowering plant diversification rates. We investigate climatic shifts in the flowering plant order Ericales, which consists of We estimate phylogenetic trees from transcriptomic data, 64 chloroplast loci, and Angiosperms353 nuclear loci that, respectively, incorporate 147, 4508, and 2870 Ericales species. We use these phylogenetic trees to analyse how climatic shifts are associated with WGD, gene‐tree conflict, life‐history, and diversification rates. Early branches in the phylogenetic trees are extremely short, and have high levels of gene‐tree conflict and at least one WGD. On lineages descended from these early branches, there is a significant association between climatic shifts (primarily out of tropical climates), further WGDs, and life‐history. Extremely short early branches, and their associated gene‐tree conflict and WGDs, appear to underpin the explosive origin of numerous species rich Ericales clades. The evolution of diverse climatic tolerances in these species rich clades is tightly associated with WGD and life‐history.
This content will become publicly available on May 23, 2025
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
more » « less- PAR ID:
- 10528510
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature
- Volume:
- 629
- Issue:
- 8013
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 843 to 850
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary c . 14 000 species with diverse climatic tolerances. -
Abstract In the age of next-generation sequencing, the number of loci available for phylogenetic analyses has increased by orders of magnitude. But despite this dramatic increase in the amount of data, some phylogenomic studies have revealed rampant gene-tree discordance that can be caused by many historical processes, such as rapid diversification, gene duplication, or reticulate evolution. We used a target enrichment approach to sample 400 single-copy nuclear genes and estimate the phylogenetic relationships of 13 genera in the lichen-forming family Lobariaceae to address the effect of data type (nucleotides and amino acids) and phylogenetic reconstruction method (concatenation and species tree approaches). Furthermore, we examined datasets for evidence of historical processes, such as rapid diversification and reticulate evolution. We found incongruence associated with sequence data types (nucleotide vs. amino acid sequences) and with different methods of phylogenetic reconstruction (species tree vs. concatenation). The resulting phylogenetic trees provided evidence for rapid and reticulate evolution based on extremely short branches in the backbone of the phylogenies. The observed rapid and reticulate diversifications may explain conflicts among gene trees and the challenges to resolving evolutionary relationships. Based on divergence times, the diversification at the backbone occurred near the Cretaceous-Paleogene (K-Pg) boundary (65 Mya) which is consistent with other rapid diversifications in the tree of life. Although some phylogenetic relationships within the Lobariaceae family remain with low support, even with our powerful phylogenomic dataset of up to 376 genes, our use of target-capturing data allowed for the novel exploration of the mechanisms underlying phylogenetic and systematic incongruence.
-
Premise Cornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales.
Methods Using the Angiosperms353 probe set and existing data sets, we generated phylogenomic data for 158 samples, representing all families in the Cornales, with intensive sampling in the Cornaceae.
Results We curated an average of 312 genes per sample, constructed maximum likelihood gene trees, and inferred a species tree using the summary approach implemented in ASTRAL‐III, a method statistically consistent with the multispecies coalescent model.
Conclusions The species tree we constructed generally shows high support values and a high degree of concordance among individual nuclear gene trees. Relationships among families are largely congruent with previous molecular studies, except for the placement of the nyssoids and the Grubbiaceae‐Curtisiaceae clades. Furthermore, we were able to place Hydrostachyaceae within Cornales, and within Cornaceae, the monophyly of known morphogroups was well supported. However, patterns of gene tree discordance suggest potential ancient reticulation, gene flow, and/or ILS in the Hydrostachyaceae lineage and the early diversification of
Cornus . Our findings reveal new insights into the diversification process across Cornales and demonstrate the utility of the Angiosperms353 probe set. -
Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection
Summary Phylogenetic analysis is complicated by interspecific gene flow and the presence of shared ancestral polymorphisms, particularly those maintained by balancing selection. In this study, we aimed to examine the prevalence of these factors during the diversification of
Populus , a model tree genus in the Northern Hemisphere.We constructed phylogenetic trees of 29
Populus taxa using 80 individuals based on re‐sequenced genomes. Our species tree analyses recovered four main clades in the genus based on consensus nuclear phylogenies, but in conflict with the plastome phylogeny. A few interspecific relationships remained unresolved within the multiple‐species clade because of inconsistent gene trees. Our results indicated that gene flow has been widespread within each clade and also occurred among the four clades during their early divergence.We identified 45 candidate genes with ancient polymorphisms maintained by balancing selection. These genes were mainly associated with mating compatibility, growth and stress resistance.
Both gene flow and selection‐mediated ancient polymorphisms are prevalent in the genus
Populus . These are potentially important contributors to adaptive variation. Our results provide a framework for the diversification of model tree genus that will facilitate future comparative studies. -
Ruane, Sara (Ed.)Abstract Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).]more » « less