Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 17, 2026
-
ABSTRACT ObjectiveEnvironmental variability as a factor of climate change and water management can result in fluctuations in the abundance and distribution of fish populations from year to year, with either negative or positive effects depending on behavioral and physiological requirements and the ability to adapt to changing conditions. Variability in water levels can also influence prey availability, affecting predator abundance in seasonal foraging areas. In this study, our objective was to better understand how environmental variation has affected the relative abundance of Common Snook Centropomus undecimalis in the freshwater/estuarine habitats of Everglades National Park. MethodsElectrofishing data over 17 years (2004–2021) were analyzed in relation to a long-term time-series of environmental conditions, including water level, temperature, salinity, and precipitation. We used seasonal and trend decomposition via locally estimated scatterplot smoothing to isolate the effect of seasonality and identify nonlinear trends in the environmental time-series data and Common Snook abundance and Mann–Kendall trend tests to identify monotonic and directional trends over time. To identify the factors that best explain variation in Common Snook abundance, we used generalized linear models to relate relative abundance to the environmental covariates. ResultsWe found significant long-term trends of increasing water level and temperature and decreasing salinity in the study area. The generalized linear models indicated that Common Snook abundance had a negative relationship with water level and a positive relationship with temperature. Common Snook abundance over the 17 years of sampling was relatively stable; however, increases/decreases in Common Snook abundance corresponded to both seasonal changes in water level and the periodic occurrence of extreme conditions (e.g., cold spells, droughts, prolonged dry-season flooding). ConclusionsUnderstanding how past environmental change has affected fish populations can provide insight into how they may respond to future conditions. Our results suggest that water management decisions that maintain seasonal patterns of high/low water levels can potentially mitigate climate-driven shifts by providing conditions that promote prey production in the wet season and foraging opportunities in the dry season, increasing the relative abundance of ecologically and recreationally important species such as Common Snook.more » « lessFree, publicly-accessible full text available September 1, 2026
-
ABSTRACT ObjectiveThe objective of this study was to quantify the effects of temperature, hydrology, and body size on the diet and energy requirements of a generalist predator, Common Snook Centropomus undecimalis (hereafter, “snook”), to gain a better understanding of predator–prey dynamics in the wake of global change. We first ask how temperature, hydrology, and body size influence the occurrence of fish, invertebrates, and empty stomachs in the diet of snook. Next, we model the energetic requirements of snook as a function of body size and temperature. Last, we use predation simulations to test how changes in prey quality, together with snook energy requirements, interact to shape prey demand. MethodsThis study used long-term empirical diet information for snook that were collected from the Shark River, Everglades National Park, alongside models of consumer energetic needs and predation simulations. We used a set of generalized linear models to determine the relationships between snook diet and a suite of predictor variables representing hydrology, temperature, and body size. Models of consumer energetic requirements were used to better understand the total daily caloric needs of snook across a range of temperature and body sizes relative to the available energy in the fish and invertebrate prey that were collected from the system. Last, we conducted predation simulations to highlight the effects of variable diet scenarios on the foraging behaviors that are required to meet the total daily energetic requirements of snook at various temperatures and body sizes. ResultsSnook were observed consuming less fish, coupled with an increased likelihood of empty stomachs, at higher temperatures. Reliance on invertebrate taxa increased at high marsh stages. In addition to marsh stage, smaller-bodied individuals were more likely to consume invertebrates. The predation simulations revealed that snook that consumed invertebrate-dominated diets required greater prey biomass as well as an increased number of individual prey items to meet their daily energetic requirements relative to fish that consumed diets that contain fish. However, if snook maintained even a small proportion of fish in their diet, it substantially reduced the number and biomass of prey needed to meet their energetic requirements. ConclusionsOur predation simulations indicated that snook should select for high-quality fish prey as temperatures warm. However, the empirical data revealed a decrease in the probability of high-quality fish prey in the diets of snook. Furthermore, the empirical diet data showed that low-quality invertebrate prey were more likely to be seen in the diets of snook at high water levels. As temperatures increase and hydrology becomes increasingly variable because of global change, snook will likely need to consume larger quantities of lower quality prey (i.e., compensatory foraging) or disperse to forage in more optimal habitats. These results highlight the dynamic interplay between environmental conditions and consumer energetic needs for shaping the foraging ecology of a generalist predator.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Numerous species face redistribution and compression of habitat due to climate change. Compounded with anthropogenic stressors, coastal systems are among those experiencing the largest shifts in distribution and degradation of habitats. We coupled long-term movement and environmental data to assess how a freshwater species responds to changes in a coastal refuge habitat to quantify distributional changes, identify key environmental variables, and provide restoration targets. Salinity, variation in salinity, and stage of surrounding marsh habitat were the most important variables driving Florida bass (Micropterus salmoides) occurrence in the estuary. Salinity below 8.7 ppt had the largest positive effect on Florida bass occurrence, while low levels of daily variation in salinity (< 1.3 SD) and marsh stages between 11.4 and 27.7 cm were associated with an increased probability of Florida bass occurrence. Years with above average freshwater inputs that shifted mesohaline boundaries downstream generated 15.3 km2 of both core and conditional habitat for Florida bass, average conditions generated 4.4 km2 of core and conditional habitat, whereas dry conditions compressed Florida bass habitat to 1.7 km2. These results suggest that varying environmental scenarios can shift the amount of suitable habitat available for freshwater species using conditional coastal habitats. Our study provides salinity and marsh depth thresholds that offer actionable management targets to maximize the presence of Florida bass in coastal rivers, with population and fishing quality benefits. Climate change will likely result in large-scale reductions of critical dry season habitat for these species, while restoration efforts and adaptive management can bolster the resiliency of these habitats.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Despite their somewhat frequent appearance in extreme-ultraviolet (EUV) imaging of off-limb flares, the origins of supra-arcade downflows (SADs) remain a mystery. Appearing as dark, tendril-like downflows above growing flare loop arcades, SADs themselves are yet to be tied into the standard model of solar flares. The uncertainty of their origin is, in part, due to a lack of spectral observations, with the last published SAD spectral observations dating back to the Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation era in 2003. In this work, we present new observations of SADs within an M-class solar flare on 2022 April 2, observed by the Hinode EUV Imaging Spectrometer (EIS) and the NASA Solar Dynamics Observatory. We measure FeXXIV192.02 Å Doppler downflows and nonthermal velocities in the low-intensity SAD features, exceeding values measured in the surrounding flare fan. The ratio of temperature-sensitive FeXXIV255.11 Å and FeXXIII263.41 Å lines also allows the measurement of electron temperature, revealing temperatures within the range of the surrounding flare fan. We compare EIS line-of-sight Doppler velocities with plane-of-sky velocities measured by Atmospheric Imaging Assembly, to construct the 3D velocity profile of four prominent SADs, finding evidence for their divergence above the flare loop arcade—possibly related to the presence of a high-altitude termination shock. Finally, we detect “stealth” SADs, which produce SAD-like Doppler signals, yet with no change in intensity.more » « lessFree, publicly-accessible full text available June 10, 2026
-
We report the growth and optical characterization of single-crystal BiFe1−xMnxO3 thin films directly on SrTiO3/Si(001) substrates using molecular beam epitaxy. X-ray diffraction confirmed epitaxial growth, film crystallinity, and sharp interface quality. Scanning electron microscopy and energy dispersive X-ray spectroscopy verified uniform film morphology and successful Mn incorporation. Spectroscopic ellipsometry revealed a systematic bandgap reduction with increasing Mn concentration, from 2.7 eV in BiFeO3 to 2.58 eV in BiFe0.74Mn0.26O3, consistent with previous reports on Mn-doped BiFeO3. These findings highlight the potential of BiFe1₋xMnxO3 films for bandgap engineering, advancing their integration into silicon-compatible multifunctional optoelectronic and photovoltaic applications.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Excitation transfer across the interfaces between graphene, perylenetetracarboxylic diimide (PTCDI), and titanyl phthalocyanine (TiOPc) was studied by using transient absorption and photoluminescence spectroscopy. Both photoluminescence quenching and transient absorption measurements confirm the presence of a type-II interface between PTCDI and TiOPc. While the graphene/PTCDI interface is expected to exhibit type-I behavior, transient absorption measurements indicate that only electrons transfer from PTCDI to graphene, with no evidence of hole transfer. Density functional theory calculations reveal significant ground-state electron transfer from graphene to PTCDI, resulting in band bending that prevents excited holes from transferring from PTCDI to graphene. This feature is exploited in a trilayer heterostructure of graphene/PTCDI/TiOPc, where the spatial separation of photoexcited electrons and holes in graphene and TiOPc, respectively, leads to the formation of long-lived photoexcitations with a lifetime of approximately 500 ps. Furthermore, spatially resolved transient absorption measurements reveal the immobile nature of these excitations, confirming that they are charge-transfer excitons rather than free electrons and holes. These results provide valuable insights into the complex interlayer photoexcitation transfer properties and demonstrate precise control over the layer population and the recombination lifetime of photocarriers in such hybrid heterostructures.more » « lessFree, publicly-accessible full text available April 10, 2026
-
The Fastest Path to Discovering the Second Electromagnetic Counterpart to a Gravitational Wave EventAbstract The discovery of a second electromagnetic counterpart to a gravitational wave event represents a critical goal in the field of multi-messenger astronomy. In order to determine the optimal strategy for achieving this goal, we perform comprehensive simulations comparing two potential paths forward: continuing the current LIGO-Virgo-KAGRA (LVK) observing run, O4, versus temporarily shutting down the detectors for upgrades before beginning the next observing run, O5. Our simulations incorporate current O4 instrument sensitivities and duty cycles, as well as projected configurations for O5, while accounting for variables such as binary neutron star merger rates, system properties, viewing angles, dust extinction, and kilonova (KN) observables. Our results indicate that a KN discovery would occur days (middle 50% interval) sooner in O5 compared to O4, suggesting that extending O4 would lead to faster discovery if the shutdown period between runs is >4 months. Moreover, for 88% of our simulations, continuing O4 results in earlier KN discovery when compared to the expected two-year shutdown between O4 and O5. Given these findings and the critical importance of avoiding a >10 yr gap between first and second electromagnetic counterpart discoveries, we suggest LVK consider extending O4 operations for as long as feasible prior to shutting down for critical upgrades.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
We report experimental evidence that MoSe2 and WS2 allow the formation of type-I and type-II interfaces, according to the thickness of the former. Heterostructure samples are obtained by stacking a monolayer WS2 flake on top of a MoSe2 flake that contains regions of thickness from one to four layers. Photoluminescence spectroscopy and transient absorption measurements reveal a type-II interface in the regions of monolayer MoSe2 in contact with monolayer WS2. In other regions of the heterostructure formed by multilayer MoSe2 and monolayer WS2, features of type-I interface are observed, including the absence of charge transfer and dominance of intralayer excitons in MoSe2. The coexistence of type-I and type-II interfaces in a single heterostructure offers opportunities to design sophisticated two-dimensional materials with finely controlled photocarrier behaviors.more » « lessFree, publicly-accessible full text available January 27, 2026
An official website of the United States government
