 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources2
 Resource Type

00000020000
 More
 Availability

20
 Author / Contributor
 Filter by Author / Creator


Biondini, Gino (2)

Hoefer, Mark A. (2)

Maiden, Michelle D. (1)

Ryskamp, Samuel (1)

Ryskamp, Samuel J. (1)

#Tyler Phillips, Kenneth E. (0)

#Willis, Ciara (0)

& AbreuRamos, E. D. (0)

& Abramson, C. I. (0)

& AbreuRamos, E. D. (0)

& Adams, S.G. (0)

& Ahmed, K. (0)

& Ahmed, Khadija. (0)

& Aina, D.K. Jr. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Arnett, N. (0)

 Filter by Editor


null (1)

& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Brennan K. (0)

& Brennan, K. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Ferretti, F. (0)

& Higgins, A. (0)

& J. Peters (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Sahin. I. (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Resonant Yshaped soliton solutions to the Kadomtsev–Petviashvili II (KPII) equation are modelled as shock solutions to an infinite family of modulation conservation laws. The fully twodimensional soliton modulation equations, valid in the zero dispersion limit of the KPII equation, are demonstrated to reduce to a onedimensional system. In this same limit, the rapid transition from the larger Y soliton stem to the two smaller legs limits to a travelling discontinuity. This discontinuity is a multivalued, weak solution satisfying modified Rankine–Hugoniot jump conditions for the onedimensional modulation equations. These results are applied to analytically describe the dynamics of the Mach reflection problem, Vshaped initial conditions that correspond to a soliton incident upon an inward oblique corner. Modulation theory results show excellent agreement with direct KPII numerical simulation.more » « less

Ryskamp, Samuel ; Maiden, Michelle D. ; Biondini, Gino ; Hoefer, Mark A. ( , Journal of Fluid Mechanics)null (Ed.)The dynamics of initially truncated and bent line solitons for the Kadomtsev–Petviashvili (KPII) equation modelling internal and surface gravity waves is analysed using modulation theory. In contrast to previous studies on obliquely interacting solitons that develop from acute incidence angles, this work focuses on initial value problems for the obtuse incidence of two or three partial line solitons, which propagate away from one another. Despite counterpropagation, significant residual soliton interactions are observed with novel physical consequences. The initial value problem for a truncated line soliton – describing the emergence of a quasionedimensional soliton from a wide channel – is shown to be related to the interaction of oblique solitons. Analytical descriptions for the development of weak and strong interactions are obtained in terms of interacting simple wave solutions of modulation equations for the local soliton amplitude and slope. In the weak interaction case, the longtime evolution of truncated and large obtuse angle solitons exhibits a decaying, parabolic wave profile with temporally increasing focal length that asymptotes to a cylindrical Korteweg–de Vries soliton. In contrast, the strong interaction case of slightly obtuse interacting solitons evolves into a steady, onedimensional line soliton with amplitude reduced by an amount proportional to the incidence slope. This strong interaction is identified with the ‘Mach expansion’ of a soliton with an expansive corner, contrasting with the wellknown Mach reflection of a soliton with a compressive corner. Interestingly, the critical angles for Mach expansion and reflection are the same. Numerical simulations of the KPII equation quantitatively support the analytical findings.more » « less