Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we present the fabrication of a two-step thermoresponsive ultrafiltration (UF) membrane through polymerization of a lyotropic liquid crystal (LLC). A mixture of commercially available Pluronic F127 block copolymer, water (containing ammonium persulfate as the initiator), and polymerizable oil (n-butyl acrylate/ethylene glycol dimethacrylate) is used to create an LLC with lamellar structure, as characterized by cross-polarized light microscopy and atomic force microscopy. Differential scanning calorimetry is employed to evaluate the thermoresponsive behavior of the polymerized LLC (polyLLC). Two-step thermoresponsiveness (~35 °C and ~50 °C) of the polyLLC is observed due to the lower critical solution temperature (LCST) of F127 and melting of the crystalline structure of the polyethylene oxide (PEO) chains of the F127 surfactant. In the next step, the obtained mesophase is cast on a nonwoven polyester support sheet followed by thermal polymerization. The hydration capacity, water flux, water flux recovery after fouling, and molecular weight cut-off (MWCO) of the obtained membrane are evaluated at different temperatures to examine its thermoresponsiveness. The experimental results reveal that the UF membrane has a reversible thermoresponsive behavior at the LCST and PEO melting of polyLLC. Additionally, cleaning efficiency of the fouled membrane can be enhanced by using its thermoresponsive behavior, resulting in an extended lifetime of the product. Furthermore, the MWCO of the membrane can be altered with temperature due to the pore size change with temperature stimulus.more » « less
-
Lyotropic liquid crystals (LLCs) have drawn attention in numerous technical fields as they feature a variety of nanometer-scale structures, processability, and diverse chemical functionality. However, they suffer from poor mechanical properties and thermal stability. Polymerization in LLCs, referred to as LLC templating, is an effective approach to overcome this issue. While the templating approach results in robust mechanical, physical, and thermal properties, retention of the parent LLC structure after polymerization has been a major concern in the field. Therefore, there have been several efforts to introduce new materials and techniques to preserve the native LLC nanostructure after polymerization. In this review, we survey the efforts put in this area along with the applications of the obtained materials from LLC templating, after providing a brief introduction of LLC structures. Moreover, polymerization kinetics in different LLC structures, as a key player in the structure retention, are analyzed. Furthermore, we discuss the outlook of the field and available opportunities.more » « less
-
null (Ed.)In this study, we examine the polymerization kinetics with different thermal initiators in lamellar and hexagonal lyotropic liquid crystal (LLC) structures directed by Pluronic L64. Ammonium persulfate is used to initiate the polymerization from the water phase, whereas azobisisobutyronitrile and benzoyl peroxide are employed to commence the reaction through the monomer phase. While the mesophase structure remains intact for all the initiation systems, the kinetics of polymerization and conversion vary significantly. The obtained differential scanning calorimetry (DSC) results reveal that, under the same conditions, the initiation from water (IFW) system results in enhanced reaction rates as well as higher monomer conversions compared to the initiation from oil (IFO) system. A higher termination rate in LLC nanoconfinements induces lower reaction rates in the IFO system. Moreover, our work on different LLC structures shows that the effect of nanoconfinement on the polymerization rate can be minimized through IFW. Chemorheology not only confirms the results obtained from DSC, but also shows that, in similar monomer conversions, the polymers obtained from the IFW system exhibit improved mechanical properties over the samples produced through the IFO process.more » « less