In this work, we present an extensive comparative study between novel titanium nitride nanoparticles (TiN NPs) and commercial gold nanorods (GNR), both dispersed in water and exposed to a pulsed laser‐induced cavitation process. The optical density, shockwave emission, and bubble formation of these solutions were investigated using shadowgraphy, spatial transmittance modulation, and acoustic measurements. TiN nanoparticle solutions exhibited high stability undser a periodic nanosecond pulsed‐laser irradiation, making these nanomaterials promising agents for high‐power applications. In addition, they demonstrated a stronger nonlinear absorption compared to the GNR solutions, and plasma formation at lower laser energies. This study advances our understanding of the optical properties of TiN and discusses significant differences compared to gold, with important implications for future applications of this material in water treatment, nonlinear signal converting, and laser‐induced cavitation for medical implementations, among others.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aguilar, Guillermo (2)
-
Berrospe‐Rodriguez, Carla (2)
-
Mangolini, Lorenzo (2)
-
Sabzeghabae, Ariana Nushin (2)
-
Wu, Chaolumen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Sabzeghabae, Ariana Nushin ; Berrospe‐Rodriguez, Carla ; Wu, Chaolumen ; Mangolini, Lorenzo ; Aguilar, Guillermo ( , Advanced Optical Materials)
Abstract Titanium nitride nanoparticles have become a research interest due to their distinguished optical and photothermal properties. Furthermore, the search for nanoparticle solutions with tunable nonlinear optical properties for laser‐based applications is critical. More specifically, third order optical nonlinearities such as reverse saturable absorption, optical liming, and self‐focusing are important in the biomedical and electronics fields. The optical nonlinearities of titanium nitride plasmonic nanoparticles are investigated as a function of material concentration in water solutions. Furthermore, the effect of nanoparticle clustering on optical nonlinearities is investigated by fabricating micrometer‐sized clusters of ≈50 nm titanium nitride particles. These studies demonstrate that the nonlinear absorption coefficient increases linearly with concentration. However, clusters require higher concentrations compared to the freestanding nanoparticles to exhibit similar nonlinear absorption coefficient and optical density. Similarly, the optical limiting threshold for titanium nitride nanoparticles appears to be lower compared to the cluster solutions, which is impacted by the collective scattering of nanoparticles and high reverse saturable absorption. In addition, self‐focusing is observed in the continuous resonant regime. This study provides an in‐depth analysis of the nonlinear optical properties of titanium nitride, with relevant consequences for applications such as sensor protection and photothermal therapy.