Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It is widely accepted that the interaction of swift heavy ions with many complex oxides is predominantly governed by the electronic energy loss that gives rise to nanoscale amorphous ion tracks along the penetration direction.more » « lessFree, publicly-accessible full text available August 7, 2025
-
Herein, a combinatorial approach is developed to conduct high‐throughput studies on the nanosecond pulsed laser‐induced dewetting phenomenon of bilayer Ag–Co metallic thin films. Laser irradiation results in the spontaneous rupture of these films in nanosecond timescale, forming bimetallic nanoparticles (NPs) through intermediate stages of hole formation and bicontinuous nanostructures. This approach utilizes bilayer thin films with thickness gradients in both Ag and Co layers (referred to as bigradient samples) while maintaining a constant overall thickness. The laser irradiation on such bigradient bilayer films facilitates control on Ag and Co ratio in the thin films, thus enabling material libraries of Ag–Co NPs covering a large compositional variation. The evolution of NPs with a correlation between NP diameter and interparticle spacings is further studied. The study reveals monotonic increase in NP size and interparticle spacing in Co/Ag bilayer arrangement, while an increase and subsequent decrease in the NP size is observed at 50% Ag in Ag/Co bigradient films. A transition from intermediate stage hole formation to bicontinuous nanostructures with changing composition is also observed. These changes in intermediate stage morphologies and dewetting mechanism are attributed to variation of the free energy of the bilayer system dominated by intermolecular interaction forces.more » « less
-
Abstract The multi‐principal element alloy nanoparticles (MPEA NPs), a new class of nanomaterials, present a highly rewarding opportunity to explore new or vastly different functional properties than the traditional mono/bi/multimetallic nanostructures due to their unique characteristics of atomic‐level homogeneous mixing of constituent elements in the nanoconfinements. Here, the successful creation of NiCoCr nanoparticles, a well‐known MPEA system is reported, using ultrafast nanosecond laser‐induced dewetting of alloy thin films. Nanoparticle formation occurs by spontaneously breaking the energetically unstable thin films in a melt state under laser‐induced hydrodynamic instability and subsequently accumulating in a droplet shape via surface energy minimization. While NiCoCr alloy shows a stark contrast in physical properties compared to individual metallic constituents, i.e., Ni, Co, and Cr, yet the transient nature of the laser‐driven process facilitates a homogeneous distribution of the constituents (Ni, Co, and Cr) in the nanoparticles. Using high‐resolution chemical analysis and scanning nanodiffraction, the environmental stability and grain arrangement in the nanoparticles are further investigated. Thermal transport simulations reveal that the ultrashort (≈100 ns) melt‐state lifetime of NiCoCr during the dewetting event helps retain the constituent elements in a single‐phase solid solution with homogenous distribution and opens the pathway to create the unique MPEA nanoparticles with laser‐induced dewetting process.more » « less
-
In this study, we describe reducing the moisture vapor transmission through a commercial polymer bag material using a silicon-incorporated diamond-like carbon (Si-DLC) coating that was deposited using plasma-enhanced chemical vapor deposition. The structure of the Si-DLC coating was analyzed using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and electron energy loss spectroscopy. Moisture vapor transmission rate (MVTR) testing was used to understand the moisture transmission barrier properties of Si-DLC-coated polymer bag material; the MVTR values decreased from 10.10 g/m2 24 h for the as-received polymer bag material to 6.31 g/m2 24 h for the Si-DLC-coated polymer bag material. Water stability tests were conducted to understand the resistance of the Si-DLC coatings toward moisture; the results confirmed the stability of Si-DLC coatings in contact with water up to 100 °C for 4 h. A peel-off adhesion test using scotch tape indicated that the good adhesion of the Si-DLC film to the substrate was preserved in contact with water up to 100 °C for 4 h.more » « less
-
null (Ed.)Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports the conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures.more » « less
-
We provide insights pertaining the dependence of undercooling in the formation of graphite, nanodiamonds, and Q-carbon nanocomposites by nanosecond laser melting of diamond-like carbon (DLC). The DLC films are melted rapidly in a super-undercooled state and subsequently quenched to room temperature. Substrates exhibiting different thermal properties—silicon and sapphire, are used to demonstrate that substrates with lower thermal conductivity trap heat flow, inducing larger undercooling, both experimentally and theoretically via finite element simulations. The increased undercooling facilitates the formation of Q-carbon. The Q-carbon is used as nucleation seeds for diamond growth via laser remelting and hot-filament chemical vapor deposition.more » « less